• 제목/요약/키워드: Stress anisotropy

검색결과 241건 처리시간 0.024초

ECAP공법으로 제조된 무산소동의 미세조직 및 기계적 성질 이방성에 대한 고찰 (A Study on the Microstructure and Anisotropic Mechanical Properties of Oxygen-Free Copper Fabricated by Equal Channel Angular Pressing)

  • 이재근;홍영곤;김형섭;박성혁
    • 한국군사과학기술학회지
    • /
    • 제22권4호
    • /
    • pp.492-500
    • /
    • 2019
  • Equal channel angular pressing(ECAP) is a severe plastic deformation technique capable of introducing large shear strain in bulk metal materials. However, if an ECAPed material has an inhomogeneous microstructure and anisotropic mechanical properties, this material is difficult to apply as structural components subjected to multi-axial stress during use. In this study, extruded oxygen-free copper(OFC) rods with a large diameter of 42 mm are extruded through ECAP by route Bc up to 12 passes. The variations in the microstructure, hardness, tensile properties, and microstructural and mechanical homogeneity of the ECAPed samples are systematically analyzed. High-strength OFC rods with a homogeneous and equiaxed-ultrafine grain structure are obtained by the repeated application of ECAP up to 8 and 12 passes. ECAPed samples with 4 and 8 passes exhibit much smaller differences in terms of the average grain sizes on the cross-sectional area and the tensile strengths along the axial and circumferential directions, as compared to the samples with 1 and 2 passes. Therefore, it is considered that the OFC materials, which are fabricated via the ECAP process with pass numbers of a multiple of 4, are suitable to be applied as high-strength structural parts used under multi-axial stress conditions.

강관다단 그라우팅으로 보강된 터널의 막장 안정성 평가 (Evaluation of Face Stability of Tunnel with Steel Pipe-Reinforced Multi-step Grouting)

  • 이인모;이재성;남석우
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.273-280
    • /
    • 2003
  • Tunneling in difficult geological conditions is often inevitable especially in urban areas. Ground improvement and reinforcement techniques are often required to guarantee safe tunnel excavations and/or to prevent damage to adjacent structures. The steel pipe-reinforced multi-step grouting method has been recently applied to tunnel sites in Korea as an auxiliary technique. In this study, the face stability with steel pipe-reinforced multi-step grouting was evaluated by simultaneously considering two factors: one is the effective stress acting on the tunnel face calculated by limit theorem and limit equilibrium method; the other is the seepage force obtained by means of numerical analysis. The study revealed that the influence of the steel pipe-reinforced multi-step grouting on the support pressure in dry condition is not significant while there is relatively a large amount of reduction in seepage forces by adopting the technique in saturated condition. The effect of the anisotropy of permeability on the seepage force acting on the tunnel face was also estimated by conducting the coupled analysis. It was found that a higher horizontal permeability compared with the vertical one causes reduction in the seepage force acting on the tunnel face.

  • PDF

이상공정이론 및 하이브리드 박막/쉘 방법을 이용한 박판성형품의 충돌거동 해석 (Incorporation of Sheet Forming Effects in Crash Simulations Using Ideal Forming Theory and Hybrid Membrane/shell Method)

  • 류한선;정관수;윤정환;한정석;윤재륜;강태진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.148-151
    • /
    • 2003
  • In order to achieve reliable but cost-effective crash simulations of stamped parts, sheet forming process effects were incorporated in simulations using the ideal forming theory mixed with the 3D hybrid membrane/shell method, while the subsequent crash simulations were carried out using a dynamic explicit finite element code. Example solutions performed for forming and crash simulations of I- and S-shaped rails verified that the proposed approach is cost-effective without sacrificing accuracy. The method required a significantly small amount of additional computation time, less than 3% for the specific examples, to incorporate sheet forming effects to crash simulations. As for the constitutive equation, the combined isotropic-kinematic hardening law and the non-quadratic anisotropic yield stress potential as well as its conjugate strain-rate potential were used to describe the anisotropy of AA6114-T4 aluminum alloy sheets.

  • PDF

Distribution of Excess Porepressure caused by PCPT into OC clay

  • Lee, Woo-Jin
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.312-333
    • /
    • 2006
  • This paper presents the results of an analysis of the excess porewater pressure distribution due to piezocone penetration in overconsolidated clays. From piezocone test results for moderately and heavily overconsolidated clays, it was observed that the excess porewater pressure increases monotonically from the piezocone surface to the outer boundary of the shear zone and then decreases logarithmically to the outer boundary of the plastic zone. It was also found that the size of the shear zone decreases from approximately 2.2 to 1.5 times the cone radius with increasing OCR, while the plastic radius is about 11 times the piezocone radius, regardless of the OCR. The equation developed in this study based on the modified Cam clay model and the cylindrical cavity expansion theory, which take into consideration the effects of the strain rate and stress anisotropy, provide a good prediction of the initial porewater pressure at the piezocone location. The method of predicting the spatial distribution of excess porewater pressure proposed in this study is based on a linearly increasing ${\Delta}u_{shear}$. In the shear zone and a logarithmically decreasing ${\Delta}u_{oct}$, and is verified by comparing with the excess porewater pressure measured in overconsolidated specimens at the calibration chamber.

  • PDF

전기강판의 가공 및 포화를 고려한 IPM 모터의 철손 해석 (Core Loss Analysis of IPM Motor Considering Magnetic Saturation and Manufacturing of Electrical Steel)

  • 하경호;김지현;김재관;이선권;나민수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.887.1_888.1
    • /
    • 2009
  • This paper proposes a core loss analysis method to obtain high accuracy prediction by using Multi-curve representing magnetic properties of a electrical steel in Finite Element Analysis (FEA). Generally, the magnetic prosperities of the electrical steel are measured by Epstein Method based on the international standards that are not good sufficient to predict motor performances. The method only aims to grade products in steel companies The magnetic properties of actual stator core is highly different to those given by steel companies due to the fact that stacking effect, shearing stress, nature anisotropy of electrical steels are not taken into account. In this paper, the magnetic properties are variously measured by three measuring devices, and then the several BH curves and BW curves obtained are used to analyze the core loss of a IPM. The BH curve in the high magnetic field are extrapolated using the mathematical formulation with the maximum saturation magnetic polarization measured

  • PDF

Wire-woven Bulk Kagome 의 파손 메커니즘 분석 (Analysis of Failure Mechanism for Wire-woven Bulk Kaogme)

  • 이병곤;최지은;강기주;전인수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1690-1695
    • /
    • 2007
  • Lightweight metallic truss structures with open, periodic cell are currently being investigated because of their multi-functionality such as thermal management and load bearing. The Kagome truss PCM has been proved that it has higher resistance to plastic buckling, more plastic deformation energy and lower anisotropy than other truss PCMs. The subject of this paper is an examination of the failure mechanism of Wire woven Bulk Kagome(WBK). To address this issue, the out-of-plane compressive responses of the WBK has been measured and compared with theoretical and finite element (FE) predictions. For the experiment, 2 multi-layered WBK are fabricated and 3 specimens are prepared. For the theoretical analysis, the brazed joints of each wire in WBK are modeled as the pin-joint. Then, the peak stress of compressive behavior and elastic modulus are calculated based on the equilibrium equation and energy method. The mechanical structure with five by five cells on the plane are constructed is modeled using the commercial code, PATRAN 2005. and the analysis is achieved by the commercial FE code ABAQUS version 6.5 under the incremental theory of plasticity.

  • PDF

0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제2보: 피로균열진전 거동 (Characteristic Evaluation according to Heat Treatment Conditions of Super Duplex Stainless Steel with Additive 0.2% N - Part 2: Fatigue Crack Propagation Behavior)

  • 안석환;강흥주;서현수;남기우;이건찬
    • 한국해양공학회지
    • /
    • 제23권5호
    • /
    • pp.79-84
    • /
    • 2009
  • Super duplex stainless steel has long life in severe environments by showing the enough strength and corrosion resistance. Therefore, the fracture mechanics approach needs to support the structural strength integrity for the used material. In this study, fatigue crack propagation behavior was investigated to super duplex stainless steel with 0.2% nitrogen. The various volume fraction and distribution of austenite structure for applied specimen in test were obtained by changing the heat treatment temperature and cycle. From test results, fatigue crack propagation rate showed two kinds of tendency between da/dN and ${\Delta}K$ according to distribution of austenite structure and structure anisotropy.

등방 및 이방성 암반내 공동의 열역학적 거동에 관한 전산모델연구 (A Study on the Thermo-mechanical Behavior of Underground Openings in lsotropic and Structurally Snisotropic Rock Masses)

  • 문현구;주광수
    • 터널과지하공간
    • /
    • 제1권2호
    • /
    • pp.181-203
    • /
    • 1991
  • The effects of geologic structures such as rock joins and bedding planes on the thermal conductivity of a discontinuous rock mass are studied. The expressions for the equivalent thermal conductivities of jointed rock masses are derived and found to be anisotropic. The degree of anisotropy depends primarily on the thermal properties contrast between the joint phase and surrounding intact rock, the joint density expressed as volume fraction and the inclination angle of the joint. Within the context of 2-dimensional finite element heat transfer scheme, the isotherms around a circular hole are analyzed for both the isotropic and anisotropic rock masses in 3 different thermal boundary conditions. i.e. temperature, heat flux and convection boundary conditions. The temperature in the stratified anisotripic rock mass is greatly influenced by the thermal properties of the rock formation in contact with the heat source. Using the excavation-temperature coupled elastic plastic finite element method, analyzed is the thermo-mechanical stability of a circular opening subjected to 10$0^{\circ}C$ at a depth of 527m. It is found that the thermal stress concentration was enough to deteriorate the stability and form a plastic yield zone around the opening, in contrast to the safety factor greater than 2 resulted form the excavation-only analysis.

  • PDF

횡등방성 암석의 강도해석을 위한 이방성 Mohr-Coulomb 파괴조건식 (Anisotropic Version of Mohr-Coulomb Failure Criterion for Transversely Isotropic Rock)

  • 이연규;최병희
    • 터널과지하공간
    • /
    • 제21권3호
    • /
    • pp.174-180
    • /
    • 2011
  • 횡등방성 암석의 강도해석에 활용할 목적으로 이방성 Mohr-Coulomb 파괴조건식을 제안하였다. 제안된 파괴조건식에서는 Pietruszczak & Mroz(2001)가 제안한 조직텐서를 도입하여 마찰각과 점착력을 조직텐서의 스칼라함수로 정의하였다. 두 강도정수의 이방성은 주응력좌표계와 재료 주좌표계의 상대적 회전을 바탕으로 계산된다. 이방성 파괴조건식을 최대로 하는 임계면을 찾는 방법이 Lagrange 승수법에 기초하여 제안되었다. 수치삼축압축 시험을 실시한 후 삼축압축강도와 파괴면 경사각 분석을 통하여 제안된 이방성 파괴함수의 성능을 검증하였다.

속도의존성 결정소성 모델 기반의 유한요소해석을 통한 BCC 금속의 변형 집합조직 예측 (Prediction of Deformation Texture in BCC Metals based on Rate-dependent Crystal Plasticity Finite Element Analysis)

  • 김동규;김재민;박원웅;임용택;이용신
    • 소성∙가공
    • /
    • 제23권4호
    • /
    • pp.231-237
    • /
    • 2014
  • In the current study, a rate-dependent crystal plasticity finite element method (CPFEM) was used to simulate flow stress behavior and texture evolution of a body-centered cubic (BCC) crystalline material during plastic deformation at room temperature. To account for crystallographic slip and rotation, a rate-dependent crystal constitutive law with a hardening model was incorporated into an in-house finite element program, CAMPform3D. Microstructural heterogeneity and anisotropy were handled by assigning a crystallographic orientation to each integration point of the element and determining the stiffness matrix of the individual crystal. Uniaxial tensile tests of single crystals with different crystallographic orientations were simulated to determine the material parameters in the hardening model. The texture evolution during four different deformation modes - uniaxial tension, uniaxial compression, channel die compression, and simple shear deformation - was investigated based on the comparison with experimental data available in the literature.