• Title/Summary/Keyword: Stress Wave Propagation

Search Result 194, Processing Time 0.028 seconds

Residual Stress Measurement by L$_{CR}$ Wave and Acoustic Emission Characteristics from Fatigue Crack Propagation in STS316L Weldment (STS316L용접재의 표면파에 의한 잔류응력 측정과 균열진전시의 음향방출특성)

  • 남기우;박소순;안석환
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2003
  • In this study, the residual stress and the acoustic emission Charactreistics from fatigue crack propagation were investigated, bused on the welded material of STS316L. The residual stress of welding locations could be evaluated by ultrasonic parameters, such as L$_{CR}$ wave velocity and L$_{CR}$ wave frequency; the residual stress between base metal and weld metal was evaluated. In the fatigue tests, three types of signals were observed, regardless of specimen condition, base metal, and weld metal. Based on NDE analysis of AE signals by the time-frequency analysis method, it should also be possible to evaluate, in real-time, the crack propagation and final fracture process, resulting from various damages and defects in welded structural members.

The Analysis of Stress Wave of Composite Materials (복합재료 적층판내의 응력파 해석에 관한 연구)

  • Lee, H.;Hwang, G. W.;Choi, K. Z.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.655-658
    • /
    • 1995
  • Recently years, these has been considerable interst in analysis of stress under shock wave. Stress wave is important problem for mechanical device and structural design. This paper was studied to develope the finite element program to analysis single materials and composite materials. This paper is studied for the stress wave propagation of single materials and predicted reflection of stress wave in materials. the developed program was able to analysis of stress wave propagation of composite materials and descride reflection of stress wave at contact surface.

  • PDF

Analysis of the 3-D Stress Wave in a Plate under Impact Load by Finite Element Method

  • Jin, Sung-Hoon;Hwang, Gab-Woon;Cho, Kyu-Zong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.5-10
    • /
    • 2001
  • This paper attempt to explore the shape of stress wave propagation of 3-dimensional stress field which in made in the process of the time increment. A finite element program about 3-dimensional stress wave propagation is developed for investigating the changing shape of the stress by the impact load. The finite element program, which is the solution for the 3-dimensional stress wave analysis, based on Galerkin and Newmark-${\beta}$ method at time increment step. The tensile stress and compressive stress become larger with the order of the middle , the upper and the opposite layers when the impact load is applied. In a while the shear stress become larger according to the order of the upper, the middle and the opposite layers when impact load applied.

  • PDF

Thermal stresses in a non-homogeneous orthotropic infinite cylinder

  • Edfawy, E.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.841-852
    • /
    • 2016
  • The present paper is concerned with the investigation of propagation of thermoelastic media, the finite difference technique is used to obtain the solution for the uncoupled dynamic thermoelastic stress problem in a non-homogeneous orthrotropc thick cylindrical shell. In implementing the method, the linear dynamic thermoelasticity equations are used with the appropriate boundary and initial conditions. Thermal shock stress becomes of significant magnitude due to stress wave propagation which is initiated at the boundaries by sudden thermal loading. Numerical results have been given and illustrated graphically in each case considered. The presented results indicate that the effect of inhomogeneity is very pronounced.

A Study on the Characteristics of Two Dimensional Stress Wave Propagation Using the Distinct Element Method (개별요소법에 의한 이차원 응력파의 전달특성에 관한 연구)

  • 오금호;김문겸;원용호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.406-413
    • /
    • 1998
  • The distinct element method is improved to consider the charateristics of stress wave propagation in media involving the discontinuous faces. The distinct element method has many advantages to analyse the characteristics of the reflection, refraction and deflection of the waves in nonhomogeneous media. The double-suing connection system is adopted instead of the single-spring connection system because the distinct element cannot be used for analysing the contact behavior between the different materials by only one contact spring. For the verification of the improved code, the results of the numerical analysis are compared with that of the photoelastic experiments which are one or two dimensional wave propagation problem of the nonhomogeneous media including the different accoustic impendence material or voids. It is shown that the characteristics of the stress wave propagation in nonhomogeneous media can be simulated appropriately using the improved distinct element method.

  • PDF

Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method (유한차분법을 이용한 3차원 지진파 전파 모의)

  • 강태섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF

유한요소법에 의한 3차원 충격파 해석

  • 진성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.773-777
    • /
    • 1995
  • This thesis attempt to explore the shape of stress wave propagation of 3-dimensional stress field which is made in the process of time increment. A finite element code about 3-dimensional stress wave propagation is developed for investigating the changing shape of the fracture by the impact load. The Finite Element Code, which is the solution for the 3-dimensional stress wave analysis, based on Galerkins and Newmark- .betha. method at time increment step. The tensile stress and compressive stress become larger with the order of the middle, the upper and the opposite layers when the impact load is applied. In a while the shear stress become larger according to the order of the upper, the middle and the opposite layers when impact load applied.

  • PDF

A non-destructive method for elliptical cracks identification in shafts based on wave propagation signals and genetic algorithms

  • Munoz-Abella, Belen;Rubio, Lourdes;Rubio, Patricia
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.47-65
    • /
    • 2012
  • The presence of crack-like defects in mechanical and structural elements produces failures during their service life that in some cases can be catastrophic. So, the early detection of the fatigue cracks is particularly important because they grow rapidly, with a propagation velocity that increases exponentially, and may lead to long out-of-service periods, heavy damages of machines and severe economic consequences. In this work, a non-destructive method for the detection and identification of elliptical cracks in shafts based on stress wave propagation is proposed. The propagation of a stress wave in a cracked shaft has been numerically analyzed and numerical results have been used to detect and identify the crack through the genetic algorithm optimization method. The results obtained in this work allow the development of an on-line method for damage detection and identification for cracked shaft-like components using an easy and portable dynamic testing device.

Wave propagation in a microbeam based on the modified couple stress theory

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.417-431
    • /
    • 2013
  • This paper presents responses of the free end of a cantilever micro beam under the effect of an impact force based on the modified couple stress theory. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Bernoulli-Euler beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain by using Newmark average acceleration method. In the study, the difference of the modified couple stress theory and the classical beam theory is investigated for the wave propagation. A few of the obtained results are compared with the previously published results. The influences of the material length scale parameter on the wave propagation are investigated in detail. It is clearly seen from the results that the classical beam theory based on the modified couple stress theory must be used instead of the classical theory for small values of beam height.

Numerical analysis of stress wave of projectile impact composite laminate

  • Zhangxin Guo;Weijing Niu;Junjie Cui;Gin Boay Chai;Yongcun Li;Xiaodong Wu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.107-116
    • /
    • 2023
  • The three-dimensional Hashin criterion and user subroutine VUMAT were used to simulate the damage in the composite layer, and the secondary stress criterion was used to simulate the interlayer failure of the cohesive element of the bonding layer and the propagation characteristics under the layer. The results showed that when the shear stress wave (shear wave) propagates on the surface of the laminate, the stress wave attenuation along the fiber strength direction is small, and thus producing a large stress profile. When the compressive stress wave (longitudinal wave) is transmitted between the layers, it is reflected immediately instead of being transmitted immediately. This phenomenon occurs only when the energy has accumulated to a certain degree between the layers. The transmission of longitudinal waves is related to the thickness and the layer orientation. Along the symmetry across the thickness direction, the greater is the stress amplitude along the layer direction. Based on the detailed investigation on the impact on various laminated composites carried out in this paper, the propagation characteristics of stress waves, the damage and the destruction of laminates can be explained from the perspective of stress waves and a reasonable layering sequence of the composite can be designed against damage and failure from low velocity impact.