• Title/Summary/Keyword: Stress State Monitoring

Search Result 67, Processing Time 0.02 seconds

Wind resistance performance of a continuous welding stainless steel roof under static ultimate wind loading with testing and simulation methods

  • Wang, Dayang;Zhao, Zhendong;Ou, Tong;Xin, Zhiyong;Wang, Mingming;Zhang, Yongshan
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.55-69
    • /
    • 2021
  • Ultrapure ferritic stainless steel provides a new generation of long-span metal roof systems with continuous welding technology, which exhibits many unknown behaviors during wind excitation. This study focuses on the wind-resistant capacity of a new continuous welding stainless steel roof (CWSSR) system. Full-scale testing on the welding joints and the CWSSR system is performed under uniaxial tension and static ultimate wind uplift loadings, respectively. A finite element model is developed with mesh refinement optimization and is further validated with the testing results, which provides a reliable way of investigating the parameter effect on the wind-induced structural responses, namely, the width and thickness of the roof sheeting and welding height. Research results show that the CWSSR system has predominant wind-resistant performance and can bear an ultimate wind uplift loading of 10.4 kPa without observable failures. The welding joints achieve equivalent mechanical behaviors as those of base material is produced with the current of 65 A. Independent structural responses can be found for the roof sheeting of the CWSSR system, and the maximum displacement appears at the middle of the roof sheeting, while the maximum stress appears at the connection supports between the roof sheeting with a significant stress concentration effect. The responses of the CWSSR system are greatly influenced by the width and thickness of the roof sheeting but are less influenced by the welding height.

Analysis of electrical resistivity characteristics according to the mixing ratio of coarse fillings in artificial rock joint (인공 암반절리의 조립토 충진물 혼합비에 따른 전기비저항 특성 분석)

  • Haeju Do;Tae-Min Oh;Hangbok Lee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.141-155
    • /
    • 2023
  • Monitoring technology based on electrical resistivity is widely used for non-destructive data collection and health analysis of underground structures and tunnels. Vulnerable sections such as fault zone generates many problems during construction of the tunnel. These problems cause displacement and stress changes of the ground. Therefore, it is necessary to predict the state of the fault zone section to ensure the mechanical stability of the underground structure. Monitoring the size of joints and the porosity of the fillings is essential for rocks. Previous studies have not considered the variety of fillings in rock joints. In this study, electrical resistivity tests were conducted according to the particle mixing state of the sandy fillings. When the size of fillings is decreased at the constant porosity, the electrical resistivity tends to increase. The results of this study are expected to be useful as basic electrical resistivity data for predicting the ground conditions and evaluation of the ground behavior that is containing sandy fillings in the rock joint for tunnels.

Evaluating Applicability of Photochemical Reflectance Index using Airborne-Based Hyperspectral Image: With Shadow Effect and Spectral Bands Characteristics (항공 초분광 영상을 이용한 광화학반사지수 이용 가능성 평가: 그림자 영향 및 대체 밴드를 중심으로)

  • Ryu, Jae-Hyun;Shin, Jung Il;Lee, Chang Suk;Hong, Sungwook;Lee, Yang-Won;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.507-519
    • /
    • 2017
  • The applications of NDVI (Normalized Difference Vegetation Index) as a vegetation index has been widely used to understand vegetation biomass and physiological activities. However, NDVI is not suitable way for monitoring vegetation stress because it is less sensitive to change in physiological state than biomass. PRI (Photochemical Reflectance Index) is well developed to present physiological activities of vegetation, particularly high-light-stress condition, and it has been adopted in several satellites to be launched in the future. Thus, the understanding of PRI performance and the development of analysis method will be necessary. This study aims to interpret the characteristics of light-stress-sensitive PRI in shadow areas and to evaluate the PRI calculated by other wavelengths (i.e., 488.9 nm, 553.6 nm, 646.9 nm, and 668.4 nm) instead of 570 nm that used in original PRI. Using airborne-based hyperspectral image, we found that PRI values were increased in shadow detection due to the reduction of high light induced physiological stress. However, the qualities of both PRI and NDVI data were dramatically decreased when the shadow index (SI) exceeded the threshold (SI<25). In addition, the PRI calculated using by 553.6 nm had best correlation with original PRI. This relationship was improved by multiple regression analysis including reflectances of RED and NIR. These results will be helpful to the understanding of physiological meaning on the application of PRI.

Effects of Occupational Trauma Exposure on Brain Functional Connectivity in Firefighters With Subclinical Post-Traumatic Stress Symptoms: A Resting-State Functional Magnetic Resonance Imaging Study (직업적 외상 노출이 역치 하 외상 후 스트레스 증상을 보이는 소방공무원의 뇌 기능적 연결성에 미치는 영향: 휴지기 기능적 자기공명영상 연구)

  • Heo, Yul;Bang, Minji;Lee, Sang-Hyuk;Lee, Kang Soo
    • Anxiety and mood
    • /
    • v.18 no.2
    • /
    • pp.39-47
    • /
    • 2022
  • Objective : This study investigated brain functional connectivity in male firefighters who showed subclinical post-traumatic stress disorder (PTSD) symptoms. Methods : We compared the data of 17 firefighters who were not diagnosed with PTSD and 18 healthy controls who had no trauma exposure. The following instruments were applied to assess psychiatric symptoms: Korean version of the Post-traumatic stress disorder Checklist for DSM-5 (PCL-5-K), Beck Depression Inventory-II (BDI-II), Beck Anxiety Inventory (BAI). For all subjects, functional magnetic resonance imaging was performed, and functional connectivity was compared between the two groups (family-wise error-corrected p<0.05). Additionally, correlations between psychiatric symptoms and functional connectivity were explored. Results : The following connectivity was higher than that of healthy controls: 1) the central opercular cortex-superior temporal gyrus, 2) planum polare-parahippocampal gyrus, 3) angular gyrus-amygdala, and 4) temporal fusiform cortex-parahippocampal gyrus. The functional connectivity of 1) the lateral occipital cortex-inferior temporal gyrus, 2) superior parietal lobule-caudate, and 3) middle temporal gyrus-thalamus were lower in firefighters. In firefighters, the connectivity of the planum polare-parahippocampal gyrus showed a negative correlation with the severity of arousal symptoms (rho=-0.586, p=0.013). The connectivity of the middle temporal gyrus-thalamus showed a positive correlation with the severity of intrusion (rho=0.552, p=0.022) and arousal symptoms (rho=0.619, p=0.008). The connectivity of the temporal fusiform cortex-parahippocampal gyrus was negatively correlated with intrusion (rho=-0.491, p=0.045) and arousal (rho=-0.579, p=0.015). Conclusion : Our results indicate that the brain functional connectivity is associated with occupational trauma exposure in firefighters without PTSD. Therefore, this study provides evidence that close monitoring and early intervention are important for firefighters with traumatic experience even at a subthreshold level.

Probabilistic analysis of tunnel collapse: Bayesian method for detecting change points

  • Zhou, Binghua;Xue, Yiguo;Li, Shucai;Qiu, Daohong;Tao, Yufan;Zhang, Kai;Zhang, Xueliang;Xia, Teng
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.291-303
    • /
    • 2020
  • The deformation of the rock surrounding a tunnel manifests due to the stress redistribution within the surrounding rock. By observing the deformation of the surrounding rock, we can not only determine the stability of the surrounding rock and supporting structure but also predict the future state of the surrounding rock. In this paper, we used grey system theory to analyse the factors that affect the deformation of the rock surrounding a tunnel. The results show that the 5 main influencing factors are longitudinal wave velocity, tunnel burial depth, groundwater development, surrounding rock support type and construction management level. Furthermore, we used seismic prospecting data, preliminary survey data and excavated section monitoring data to establish a neural network learning model to predict the total amount of deformation of the surrounding rock during tunnel collapse. Subsequently, the probability of a change in deformation in each predicted section was obtained by using a Bayesian method for detecting change points. Finally, through an analysis of the distribution of the change probability and a comparison with the actual situation, we deduced the survey mark at which collapse would most likely occur. Surface collapse suddenly occurred when the tunnel was excavated to this predicted distance. This work further proved that the Bayesian method can accurately detect change points for risk evaluation, enhancing the accuracy of tunnel collapse forecasting. This research provides a reference and a guide for future research on the probability analysis of tunnel collapse.

cDNA Cloning and Expression of a Cytochrome P450 1A (CYP1A) from the Pale Chub, Zacco platypus

  • Jeon, Hyoung-Joo;Park, Young-Chul;Lee, Wan-Ok;Lee, Jong-Ha;Kim, Jin-Hyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.364-372
    • /
    • 2011
  • The pale chub (Zacco platypus) is generally found in Asian countries, such as Korea, Japan, and China. Nevertheless, very little information exists about the genes involved in the metabolism of xenobiotics in this species. This species is useful in monitoring the environmental impact on various pollutants in freshwater as a sentinel fish species. We cloned the full-length cDNA sequence of xenobiotic metabolizing cytochrome P450 1A (CYP1A) gene from Z. platypus and characterized it. Tissue distribution and timedependent induction of CYP1A were studied by real-time RT-PCR. Induction pattern of CYP1A was studied by exposing the fish to an arylhydrocarbon receptor agonist, ${\beta}$-naphthoflavone (BNF). The liver showed the highest level of expression in basal state as well as BNF- treated fish. However, appreciable levels of expression were also recorded in Gill and kidney and the least level of expression was observed in the eye. The results of the time-course study revealed an induction in the liver, brain, and gills after 6 h and 12 h in most of the tissues. This study provides an insight into the xenobiotics metabolizing system of Z. platypus and offers baseline information for further research related to biomarker, stress, and adaptive response of this ecologically important fish species in the freshwater environment.

Work Environment Monitoring of Workers Using Wearable Sensor and Helmet (착용형 센서와 헬멧을 이용한 작업자의 작업환경 모니터링)

  • Gu, Ye-Jin;Kim, Jong-Jin;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.91-98
    • /
    • 2019
  • Accidents of worker that occur in isolated places are difficult to rescue, unlike general construction accidents. There is a problem of communication limitation when an accident occurs in an isolated place. Also, it is difficult to search the accident place due to the absence of CCTV. In order to solve these problems, this paper proposes a device that combines IoT technology with a safety helmet, which must be worn in the workplace. The proposed device additionally designs and implements a real-time PPG(Photoplethysmography) sensor, body temperature sensor, accelerometer sensor and a camera sensor on the helmet. The proposed helmet system allows the user and the control center to monitor the state of the worker. In addition, when an abnormal biological signal or fall occurs to the worker, the image is transmitted to the control center. By using the proposed system, it is possible to check the status of the worker in real time, so that it has an advantage that it can cope with the accident quickly.

Actual Conditions of Smoking of Public Workers within Nonsmoking Areas (공공기관 근무자의 금연구역내 흡연실태)

  • 백윤자;정문숙;권진희
    • Korean Journal of Health Education and Promotion
    • /
    • v.17 no.2
    • /
    • pp.229-237
    • /
    • 2000
  • The purpose of this study was to be useful in working out plans for improving national health by identifying public workers' knowledge of and attitude to smoking, actual conditions of smoking within nonsmoking areas, and related factors. For the purpose, the questionnaire was carried out with 761 public officials of the division manager-level and lower working in Taegu Metropolitan City Hall in september, 1998. The results are summarized as follows; Smokers of the subject group accounted for 55.1%, and the smoking rate had a significant relation with age and religion. In view of the time when smokers started smoking, smokers who started smoking after graduation from a high school accounted for 70.6%. Smokers who smoke one pack of cigarettes per day and a cigarette to its two-thirds length was the most. In the smoking place of smokers at home, 54.9% of the smokers responded that they smoke in an outdoor space The rate of smoking in an office was 68.3% and the rate of smoking within the nonsmoking areas of other public institutions was 43.0%. The results of multiple regression analysis with the actual state of smoking within the nonsmoking area of other public institutions as an independent variable revealed that smokers who check for a nonsmoking area before smoking in the public institutions and who do not smoke in an office do not smoke within the nonsmoking areas of other public institutions. In conclusion, more smoking and health education for public workers is needed to reduce the rate of national smoking and allow people to have a good smoking attitude, and it is required to arrange an institutional system who can strictly control public workers' smoking in their offices or public places and to stress a function of surveillance and monitoring by nonsmokers.

  • PDF

How Much Does My Work Affect My Health? The Relationships between Working Conditions and Health in an Italian Survey

  • Ronchetti, Matteo;Russo, Simone;Di Tecco, Cristina;Iavicoli, Sergio
    • Safety and Health at Work
    • /
    • v.12 no.3
    • /
    • pp.370-376
    • /
    • 2021
  • Backround: Working condition surveys are widely recognized as useful tools for monitoring the quality of working life and the improvements introduced by health and safety policy frameworks at the European and national level. The Italian Workers' Compensation Authority carried out a national survey (Insula) to investigate the employer's perceptions related to working conditions and their impact on health. Methods: The present study is based on the data collected from the Italian survey on health and safety at work (INSULA) conducted on a representative sample of the Italian workforce (n = 8,000). This focuses on the relationship between psychosocial risk factors and self-reported health using a set of logistic and linear regression models. Results: Working conditions such as managerial support, job satisfaction, and role act as protective factors on mental and physical health. On the contrary, workers' risk perceptions related to personal exposure to occupational safety and health risks, concern about health conditions, and work-related stress risk exposure determine a poorer state of health. Conclusions: This study highlights the link between working conditions and self-report health, and this aims to provide a contribution in the field of health at work. Findings show that working conditions must be object of specific preventive measures to improve the workers' health and well-being.

Prestress evaluation in continuous PSC bridges by dynamic identification

  • Breccolotti, Marco;Pozzaa, Francesco
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.463-488
    • /
    • 2018
  • In the last decades, research efforts have been spent to investigate the effect of prestressing on the dynamic behaviour of prestressed concrete (PSC) beams. Whereas no agreement has been reached among the achievements obtained by different Researchers and among the theoretical and the experimental results for simply supported beams, very few researches have addressed this problem in continuous PSC beams. This topic is, indeed, worthy of consideration bearing in mind that many relevant bridges and viaducts in the road and railway networks have been designed and constructed with this structural scheme. In this paper the attention is, thus, focused on the dynamic features of continuous PSC bridges taking into account the effect of prestressing. This latter, in fact, contributes to the modification of the distribution of the bending stress along the beam, also by means of the secondary moments, and influences the flexural stiffness of the beam itself. The dynamic properties of a continuous, two spans bridge connected by a nonlinear spring have been extracted by solving an eigenvalue problem in different linearized configurations corresponding to different values of the prestress force. The stiffness of the nonlinear spring has been calculated considering the mechanical behaviour of the PSC beam in the uncracked and in the cracked stage. The application of the proposed methodology to several case studies indicates that the shift from the uncracked to the cracked stage due to an excessive prestress loss is clearly detectable looking at the variation of the dynamic properties of the beam. In service conditions, this shift happens for low values of the prestress losses (up to 20%) for structure with a high value of the ratio between the permanent load and the total load, as happens for instance in long span, continuous box bridges. In such conditions, the detection of the dynamic properties can provide meaningful information regarding the structural state of the PSC beam.