DOI QR코드

DOI QR Code

Evaluating Applicability of Photochemical Reflectance Index using Airborne-Based Hyperspectral Image: With Shadow Effect and Spectral Bands Characteristics

항공 초분광 영상을 이용한 광화학반사지수 이용 가능성 평가: 그림자 영향 및 대체 밴드를 중심으로

  • Ryu, Jae-Hyun (Department of Applied Plant Science, Chonnam National University) ;
  • Shin, Jung Il (Research of Technology, GEOSTORY. Co., Ltd) ;
  • Lee, Chang Suk (National Meteorological Satellite Center, Korea Meteorological Administration) ;
  • Hong, Sungwook (Department of Environment, Energy, and Geoinfomatics, Sejong University) ;
  • Lee, Yang-Won (Department of Spatial information Engineering, Pukyong National University) ;
  • Cho, Jaeil (Department of Applied Plant Science, Chonnam National University)
  • 류재현 (전남대학교 농업생명과학대학 응용식물학과) ;
  • 신정일 ((주)지오스토리 공간정보솔루션연구소) ;
  • 이창석 (기상청 국가기상위성센터 위성분석과) ;
  • 홍성욱 (세종대학교 공과대학 환경에너지공간융합과) ;
  • 이양원 (부경대학교 환경.해양대학 공간정보시스템공학과) ;
  • 조재일 (전남대학교 농업생명과학대학 응용식물학과)
  • Received : 2017.07.05
  • Accepted : 2017.09.23
  • Published : 2017.10.30

Abstract

The applications of NDVI (Normalized Difference Vegetation Index) as a vegetation index has been widely used to understand vegetation biomass and physiological activities. However, NDVI is not suitable way for monitoring vegetation stress because it is less sensitive to change in physiological state than biomass. PRI (Photochemical Reflectance Index) is well developed to present physiological activities of vegetation, particularly high-light-stress condition, and it has been adopted in several satellites to be launched in the future. Thus, the understanding of PRI performance and the development of analysis method will be necessary. This study aims to interpret the characteristics of light-stress-sensitive PRI in shadow areas and to evaluate the PRI calculated by other wavelengths (i.e., 488.9 nm, 553.6 nm, 646.9 nm, and 668.4 nm) instead of 570 nm that used in original PRI. Using airborne-based hyperspectral image, we found that PRI values were increased in shadow detection due to the reduction of high light induced physiological stress. However, the qualities of both PRI and NDVI data were dramatically decreased when the shadow index (SI) exceeded the threshold (SI<25). In addition, the PRI calculated using by 553.6 nm had best correlation with original PRI. This relationship was improved by multiple regression analysis including reflectances of RED and NIR. These results will be helpful to the understanding of physiological meaning on the application of PRI.

정규식생지수(NDVI, Normalized Difference Vegetation Index)는 생물량 및 $CO_2$ 흡수량 추정과 병충해 탐지 등 다양한 식생 모니터링 영역에서 활용되고 있다. 그러나, 생물량 탐지에 비해 상대적으로 식생의 생리적 상태 변화에 대한 민감도가 낮아 식생의 생리적 활성 및 스트레스를 파악에 한계가 있다. 최근 개발된 광학반사지수(PRI, Photochemical Reflectance Index)는 식생의 생리적 상태 탐지에 용이한 것으로 알려지고 있으며, 식생의 탄소 흡수량 조사를 위해 향후 발사될 해외의 지구관측위성들의 주요 산출물로 선정되는 등 활용도가 높아질 것으로 전망된다. 이에 다양한 이용에 앞서 광 스트레스에 민감한 PRI 특성을 고려하여 그림자 영향의 해석 방향을 제시하고, 현재 가용한 위성으로 PRI 산출이 가능한지 알아보기 위해 대체 밴드를 평가하였다. 항공 초분광 영상을 이용한 본 연구에서는 PRI값이 그림자 부분에서 광 스트레스의 감소로 인해 증가하였다. 그러나 그림자의 정도가 임계값(Shadow Index<25)을 넘어서면 PRI와 NDVI 모두의 자료 품질이 매우 낮아졌다. 또한, 문헌의 570.0 nm 대신 553.6 nm를 사용하여 산출한 PRI가 오리지널 PRI와 높은 상관관계를 보였으며, RED와 NIR 반사도를 이용하여 다중회귀분석을 수행하였을 때 더욱 향상된 결과를 보였다. 이러한 결과는 향후 식생탐지에서 활용도가 높아질 것으로 기대되는 PRI의 생리적인 의미를 이해하는데 도움이 될 것이다.

Keywords

References

  1. Demmig-Adams, B., 1990. Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin, Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1020(1): 1-24. https://doi.org/10.1016/0005-2728(90)90088-L
  2. Drolet, G.G., K.F. Huemmrich, F.G. Hall, E.M. Middleton, T.A. Black, A.G. Barr, and H.A. Margolis, 2005. A MODIS-derived photochemical reflectance index to detect inter-annual variations in the photosynthetic light-use efficiency of a boreal deciduous forest, Remote Sensing of Environment, 98: 212-224. https://doi.org/10.1016/j.rse.2005.07.006
  3. Drolet, G.G., E.M. Middleton, K.F. Huemmrich, F.G. Hall, B.D. Amiro, A.G. Barr, T.A. Black, J.H. McCaughey, and H.A. Margolis, 2008. Regional mapping of gross light-use efficiency using MODIS spectral indices, Remote Sensing of Environment, 112: 3064-3078. https://doi.org/10.1016/j.rse.2008.03.002
  4. Karnieli, A., M. Bayasgalan, Y. Bayarjargal, N. Agam, S. Khudulmur, and C.J. Tucker, 2006. Comments on the use of the Vegetation Health Index over Mongolia, International Journal of Remote Sensing, 27(10): 2017-2024. https://doi.org/10.1080/01431160500121727
  5. Kim, H.G., S.S. Kang, and S.D. Hong, 2009. Estimation for Red Pepper (Capsicum annum L.) Biomass by Reflectance Indices with Ground-Based Remote Sensor, Korean Journal of Soil Science and Fertilizer, 42: 79-87 (in Korean with English abstract).
  6. Gamon, J.A., J. Penuelas, and C.B. Field, 1992. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency, Remote Sensing of Environment, 41: 35-44. https://doi.org/10.1016/0034-4257(92)90059-S
  7. Gamon, J.A. and J.S. Surfus, 1999. Assessing leaf pigment content and activity with a reflectometer, New Phytologist, 143: 105-117. https://doi.org/10.1046/j.1469-8137.1999.00424.x
  8. Hall, F.G., T. Hilker, N.C. Coops, A. Lyapustin, K.F. Huemmrich, E. Middleton, H. Margolis, G. Drolet, and T.A. Black, 2008. Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction, Remote Sensing of Environment, 112: 3201-3211. https://doi.org/10.1016/j.rse.2008.03.015
  9. Jiang, Z., A.R. Huete, J. Chen, Y. Chen, Li, G. Yan, and X. Zhang, 2006. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction, Remote Sensing of Environment, 101: 366-378. https://doi.org/10.1016/j.rse.2006.01.003
  10. Lee, J.-E., C. Frankenberg, C. van der Tol, J.A. Berry, L. Guanter, C.K. Boyce, J.B. Fisher, E. Morrow, J.R. Worden, S. Asefi, G. Badgley, and S. Saatchi, 2013. Forest productivity and water stress in Amazonia: observations from GOSAT chlorophyll fluorescence, The Royal Society B: Biological Sciences, 280(1761): 20130171-20130171. https://doi.org/10.1098/rspb.2013.0171
  11. Moreno, J. F., Y. Goulas, A. Huth, E. Middleton, F. Miglietta, G. Mohammed, L. Nedbal, U. Rascher, W. Verhoef, and M. Drusch, 2016. Very high spectral resolution imaging spectroscopy: The Fluorescence Explorer (FLEX) mission, Proc. of 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, Jul. 10-15, pp. 264-267.
  12. Nyongesah, M.J., W. Quan, and X. Lu, 2016. Remote sensing of assimilating branch light use efficiency using the photochemical reflectance index inHaloxylon ammodendronforest, Journal of Applied Remote Sensing, 10(2): 026017. https://doi.org/10.1117/1.JRS.10.026017
  13. Pal, S.K., A. Petrosino, and L. Maddalena eds., 2012. Handbook on soft computing for video surveillance. CRC press.
  14. Rahman, A.F., V.D. Cordova, J.A. Gamon, H.P. Schmid, and D.A. Sims, 2004. Potential of MODIS ocean bands for estimating CO2 flux from terrestrial vegetation: A novel approach, Geophysical Research Letters, 31(10): L10503. https://doi.org/10.1029/2004GL019778
  15. Ryu, J.-H., K.-S. Han, K.-J. Pi, and M.-J. Lee, 2013. Analysis of Land Cover Change Around Desert Areas of East Asia, Korean Journal of Remote Sensing, 29(1): 105-114. https://doi.org/10.7780/kjrs.2013.29.1.10
  16. Stylinski, C., J. Gamon, and W. Oechel, 2002. Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species, Oecologia, 131(3): 366-374. https://doi.org/10.1007/s00442-002-0905-9
  17. Zhang, Q., J.M. Chen, W. Ju, H. Wang, F. Qiu, F. Yang, W. Fan, Q. Huang, Y.P. Wang, Y. Feng, X. Wang, and F. Zhang, 2017. Improving the ability of the photochemical reflectance index to track canopy light use efficiency through differentiating sunlit and shaded leaves, Remote Sensing of Environment, 194: 1-15. https://doi.org/10.1016/j.rse.2017.03.012

Cited by

  1. 드론 초분광 영상과 다중 식생지수를 활용한 태화강 유역 식생변화 분석 vol.24, pp.1, 2017, https://doi.org/10.13087/kosert.2021.24.1.97
  2. 초분광 영상정보를 이용한 태화강 수계지역의 토지피복 변화분석 vol.24, pp.1, 2017, https://doi.org/10.11108/kagis.2021.24.1.012