• Title/Summary/Keyword: Stress Reactions

Search Result 190, Processing Time 0.031 seconds

Recent Studies on the Chemical Constituents of Korean Ginseng (Panax ginseng C. A. Meyer) (고려인삼의 화학성분에 관한 고찰)

  • 박종대
    • Journal of Ginseng Research
    • /
    • v.20 no.4
    • /
    • pp.389-415
    • /
    • 1996
  • Panax ginseng C.A. Meyer(Araliaceae) has been traditionally used as an expensive and precious medicine in oriental countries for more than 5, 000 years. Ginseng saponin isolated from the root of Panax ginseng have been regarded as the main effective components responsible for the pharmacological and biological activities. Such as antiaging effects. antidiabetic effects anticancer effects. Protection against physical and chemical stress. Analgesic and antipyretic effects. Effects on the central nervous system, tranquilizing action and others. Thirty kinds of ginsenosides have been so far isolated from ginseng saponin and their chemical structures have been elucidated since 1960's. Among which protopanaxadiol type is 19 kinds. protopanaxatriol type. 10 kinds and oleanane type, one. Since ginsenosides are generally labile under acidic conditions ordinary acid hydrolysis is always accompanied by many side reactions, such as epimerization. hydroxylation and cyclization of side chain of the sapogenins Especially. it is well known that C-20 glycosyl linkage of ginsenoside was hydrolysed on heating with acetic acid to give an equilibrated mixture of 20(S) and 20(R) epimers. And also, the chemical transformations of the secondary metabolites have appeared during the steaming process to prepare red ginseng. Indicating demalonylation of malonyl ginsenosides, elimination of glycosyl residue at C-20 and isomerization of hydroxyl configuration at C-20. But these studies have not provided a comprehensive picture in explaning how these ginsenosides showed val'iotas pharmacological activities of ginseng. Though some of them have been involved in the mechanism of pharmacological actions. Recently, non-saponin components have received a great deal of attention for their antioxidant, anticancer antidiabetic, immunomodulating. anticomplementary activities and so on. To meet the demand for such wide applications, studies on the non-saponin components play an important role in providing a good evidence of pharmacological and biol ogical activities. Among the non-saponin constituents of Korean ginseng, polyacetylenes, phenols. Sesquiterpenes, alkaloids. polysaccharides oligosaccharides, oligopeptides and aminoglycosides together with ginsenosides of terrestrial part are mainly described.

  • PDF

Flocculation of Red Tide Organisms in Sea Water by Using an Ignited Oyster Shell Powder and Loess Combination (소성굴패각분말과 황토의 동시 사용에 의한 적조생물의 응집)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.716-722
    • /
    • 2003
  • This study determined the optimum dosage for coagulation reactions of red tide organisms (RTO) using a combination of ignited oyster shell powder (10sp) and loess and examined the electrokinetic and rheological characteristics of their flocs. Two kinds of RTO, Cylindrotheca closterium and Skeletonema costatum, were sampled in Masan Bay and cultured in the laboratory. Coagulation experiments were conducted using various concentrations of IOSP, loess, IOSP+1oess, RTO, and a jar tester RTO cell numbers were counted for both the supernatant and RTO culture solution. The removal rates increased rapidly with increasing IOSP concentrations up to 50 mg/L and loess concentrations up to 800 mg/L. A removal rate of $100\%$ was reached at 400 mg/L of IOSP and 6,400 mg/L of loess. The highest increment $(16.7\%)$ of the rates of coagulation reaction occurred using both IOSP and loess (50+200 mg/L) in comparison with IOSP alone. The rate of coagulation reaction using both IOSP and loess (50+200 mg/L), $90.6\%,$ was similar to employing either IOSP of 150 mg/L or loess of 3,200 mg/L. All of the coagulation liquids for RTO, IOSP (200 mg/L), loess (200 ma/L), and IOSP+1oess (200+200 mg/L) revealed non-Newtonian fluid properties and therefore their shear rate vs. shear stress curves were non-linear. The coagulation liquids revealed elastic body properties at a lower shear rate increasing in the following order: RTO, IOSP (200 mg/L), loess (200 mg/L), and IOSP+1oess (200+200 mg/L. IOSP+1oess (200+200 mg/L) especially demonstrated plastic flow properties at a lower shear rate.

Role of AMP-Activated Protein Kinase (AMPK) in Smoking-Induced Lung Inflammation and Emphysema

  • Lee, Jae Seung;Park, Sun Joo;Cho, You Sook;Huh, Jin Won;Oh, Yeon-Mok;Lee, Sang-Do
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.1
    • /
    • pp.8-17
    • /
    • 2015
  • Background: AMP-activated protein kinase (AMPK) not only functions as an intracellular energy sensor and regulator, but is also a general sensor of oxidative stress. Furthermore, there is recent evidence that it participates in limiting acute inflammatory reactions, apoptosis and cellular senescence. Thus, it may oppose the development of chronic obstructive pulmonary disease. Methods: To investigate the role of AMPK in cigarette smoke-induced lung inflammation and emphysema we first compared cigarette smoking and polyinosinic-polycytidylic acid [poly(I:C)]-induced lung inflammation and emphysema in $AMPK{\alpha}1$-deficient ($AMPK{\alpha}1$-HT) mice and wild-type mice of the same genetic background. We then investigated the role of AMPK in the induction of interleukin-8 (IL-8) by cigarette smoke extract (CSE) in A549 cells. Results: Cigarette smoking and poly(I:C)-induced lung inflammation and emphysema were elevated in $AMPK{\alpha}1$-HT compared to wild-type mice. CSE increased AMPK activation in a CSE concentration- and time-dependent manner. 5-Aminoimidazole-4-carboxamide-1-${\beta}$-4-ribofuranoside (AICAR), an AMPK activator, decreased CSE-induced IL-8 production while Compound C, an AMPK inhibitor, increased it, as did pretreatment with an $AMPK{\alpha}1$-specific small interfering RNA. Conclusion: $AMPK{\alpha}1$-deficient mice have increased susceptibility to lung inflammation and emphysema when exposed to cigarette smoke, and AMPK appears to reduce lung inflammation and emphysema by lowering IL-8 production.

Preparation and Characteristics of MWNT/SnO2 Nano-Composite Anode by Homogeneous Precipitation Method (균일 침전법에 의한 MWNT/SnO2 나노복합음극재의 제조)

  • Han, Won-Kyu;Choa, Yong-Ho;Oh, Sung-Tag;Cho, Jin-Ki;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.187-192
    • /
    • 2008
  • Multi-walled carbon nanotube (MWNT)/$SnO_2$ nano-composite (MSC) for the anode electrode of a Li-ion battery was prepared using a homogeneous precipitation method with $SnCl_2$ precursors in the presence of MWNT. XRD results indicate that when annealed in Ar at $400^{\circ}C$, $Sn_6O_4(OH)_4$ was fully converted to $SnO_2$ phases. TEM observations showed that most of the $SnO_2$ nanoparticles were deposited directly on the outside surface of the MWNT. The electrochemical performance of the MSC electrode showed higher specific capacities than a MWNT and better cycleability than a nano-$SnO_2$ electrode. The electrochemical performance of the MSC electrode improved because the MWNT in the MSC electrode absorbed the mechanical stress induced from a volume change during alloying and de-alloying reactions with lithium, leading to an increase in the electrical conductivity of the composite material.

Property Evaluation of Ti Powder and Its Sintered Compacts Prepared by Ti Scrap (티타늄 스크랩을 이용한 분말제조 및 소결 성형체의 특성평가)

  • Lee, Seung-Min;Choi, Jung-Chul;Park, Hyun-Kuk;Woo, Kee-Do;Oh, Ik-Hyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.125-131
    • /
    • 2010
  • In this study, Ti powders were fabricated from Ti scrap by the Hydrogenation-Dehydrogenation (HDH) method. The Ti powders were prepared from the spark plasma sintering (SPS) and their microstructure was investigated. Hydrogenation reactions of Ti scrap occurred at near $450^{\circ}C$ with a sudden increase in the reaction temperature and the decreasing pressure of hydrogen gas during the hydrogenation process in the furnace. The dehydrogenation process was also carried out at $750^{\circ}C$ for 2 hrs in a vacuum of $10^{-4}$ torr. After the HDH process, deoxidation treatment was carried out with the Ca (purity: 99.5%) at $700^{\circ}C$ for 2 hrs in the vacuum system. It was found that the oxidation content of Ti powder that was deoxidized with Ca showed noticeably lower values, compared to the content obtained by the HDH process. In order to fabricate the Ti compacts, Ti powder was sintered under an applied uniaxial punch pressure of 40 MPa in the range of $900-1200^{\circ}C$ for 5 min under a vacuum of $10^{-4}$ torr. The relative density of the compact was 99.5% at $1100^{\circ}C$ and the tensile strength decreased with increasing sintering temperature. After sintering, all of the Ti compacts showed brittle fracture behavior, which occurred in an elastic range with short plastic yielding up to a peak stress. Ti improved the corrosion resistance of the Ti compacts, and the Pd powders were mixed with the HDH Ti powders.

The Interfacial Reactions and Reliability of SnAgCu Solder Joints under Thermal Shock Cycles (열충격 사이클에 따른 SnAgCu 솔더별 솔더 접합부의 신뢰성 및 계면반응)

  • Oh, Chulmin;Park, Nochang;Han, Changwoon;Bang, Mansoo;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.8
    • /
    • pp.500-507
    • /
    • 2009
  • Pb-free solder has recently been used in electronics in efforts to meet environmental regulations, and a number of Pb-free solder alloy choices beyond the near-eutectic SnAgCu solder are now available. With increased demand for thin and portable electronics, the high cost of alloys containing significant amounts of silver and their poor mechanical shock performance have spurred the development of low Ag SnAgCu solder, which provides improved mechanical performance at a reasonable cost. Although low Ag SnAgCu solder exhibits significantly higher fracture resistance under high-strain rates, little thermal fatigue data exist for this solder. Therefore, it is necessary to investigate thermal fatigue reliability of low Ag SnAgCu solder under variation of thermal stress in order to allow its implementation in electronic products with high reliability requirements. In this study, the reliability of Sn0.3Ag0.7Cu(SAC0307), a low Ag solder alloy, is discussed and compared with that of Sn3Ag0.5Cu(SAC305). Three sample types and six samples size are evaluated. Mechanical properties and microstructure of the solder joint are investigated under thermal shock cycles. It was observed that the mechanical strength of SAC0307 dropped slightly with thermal cycling relative to that of SAC305. This reveals that the failure mode of SAC0307 is different from that SAC305 under this critical condition.

Berberine Alleviates Paclitaxel-Induced Neuropathy

  • Rezaee, Ramin;Monemi, Alireza;SadeghiBonjar, Mohammad Amin;Hashemzaei, Mahmoud
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.90-94
    • /
    • 2019
  • Objectives: Paclitaxel (PTX) as an anticancer drug used against solid cancers, possesses adverse reactions such as neuropathic pain which has confined its use. PTX-induced neuropathic pain is mediated via activation of oxidative stress. Berberine (BER), an isoquinoline phytochemical found in several plants, exerts strong antioxidant and painkilling properties. In the current study, we aimed to evaluate pain-relieving effect of BER in a mouse model of PTX-induced neuropathic pain. Methods: This study was done using 42 male albino mice that were randomly divided into 6 groups (n = 7) as follow: Sham-operated (not treated with PTX), negative control group (PTX-treated mice receiving normal saline), BER 5, 10, and 20 mg/kg (PTX-treated mice receiving BER) and positive control group (PTX-treated mice receiving imipramine 10 mg/kg). Neuropathic pain was induced by intraperitoneal administration of four doses of PTX (2 mg/kg/day) on days 1, 3, 5 and 7. Then, on day 7, hot plate test was done to assess latency to heat to measure possible anti-neuropathic pain effect of BER. Results: Four doses of PTX 2 mg/kg/day induced neuropathy that was reduced by BER at all time-points (i.e. 0, 30, 60, 90 and 120 min) after injection (P < 0.001 in comparison to control). The statistical analysis of data showed significant differences between groups (P < 0.001 in comparison to negative control), at 30, 60, 90 and 120 min after injection of BER 5, 10 and 20 mg/kg; in other words, 30, 60, 90 and 120 min after BER administration, neuropathic pain was significantly reduced as compared to normal saline-treated mice. Conclusion: Altogether, our results showed that PTX could induce neuropathic pain as reflected by hyperalgesia and BER could alleviate PTX-induced thermal hyperalgesia.

Single-channel electroencephalography and its associations with anxiety and pain during oral surgery: a preliminary report

  • Jabur, Roberto de Oliveira;Goncalves, Ramon Cesar Godoy;Faria, Kethleen Wiechetek;Semczik, Izabelle Millene;Ramacciato, Juliana Cama;Bortoluzzi, Marcelo Carlos
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.21 no.2
    • /
    • pp.155-165
    • /
    • 2021
  • Background: This study aimed to assess the course of anxiety and pain during lower third molar (LTMo) surgery and explore the role of mobile and single-channel electroencephalography under clinical and surgical conditions. Methods: The State-Trait Anxiety Inventory (STAI), Corah's Dental Anxiety Scale (DAS), and Interval Scale of Anxiety Response (ISAR) were used. The patient self-rated anxiety (PSA), the pain felt during and after surgery, EEG, heart rate (HR), and blood pressure (BP) were assessed. Results: The Attention (ATT) and Meditation (MED) algorithms and indicators evaluated in this study showed several associations. ATT showed interactions and an association with STAI-S, pain during surgery, PSA level, HR, and surgical duration. MED showed an interaction and association with DAS, STAI-S, and pain due to anesthesia. Preclinical anxiety parameters may influence clinical perceptions and biological parameters during LTMo surgeries. High STAI-Trait and PSA scores were associated with postoperative pain, whereas high STAI-State scores were associated with more pain during anesthesia and surgery, as well as DAS, which was also associated with patient interference during surgery due to anxiety. Conclusions: The findings suggest that single-channel EEG is promising for evaluating brain responses associated with systemic reactions related to anxiety, surgical stress, and pain during oral surgery.

Effect of Hydrogen Concentration on Surface Oxidation Behavior of Alloy 600 in Simulated Primary Water of Pressurized Water Reactor (원전 1차측 수화학 환경에서 수소 농도가 Alloy 600의 표면산화 거동에 미치는 영향)

  • Yun Soo, Lim;Dong Jin, Kim;Sung Woo, Kim;Seong Sik, Hwang;Hong Pyo, Kim;Sung Hwan, Cho
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.466-475
    • /
    • 2022
  • Surface oxides and intergranular (IG) oxidation phenomena in Alloy 600 depending on hydrogen concentration were characterized to obtain clear insight into the primary water stress corrosion cracking (PWSCC) behavior upon exposure to pressurized water reactor primary water. When hydrogen concentration was between 5 and 30 cm3 H2/kg H2O, NiFe2O4 and NiO type oxides were found on the surface. NiO type oxides were found inside the oxidized grain boundary when hydrogen concentration was 5 cm3 H2/kg H2O. However, only NiFe2O4 spinel on the surface and Ni enrichment were observed when hydrogen concentration was 30 cm3 H2/kg H2O. These results indicate that the oxidation/reduction reaction of Ni in Alloy 600 depending on hydrogen concentration can considerably affect surface oxidation behavior. It appears that the formation of NiO type oxides in a Ni oxidation state and Ni enrichment in a Ni reduction (or metallic) state are common in primary water. It is believed that the above different oxidation/reduction reactions of Ni in Alloy 600 depending on hydrogen concentration can also significantly affect the resistance to PWSCC of Alloy 600.

Efficacy and safety of low dose oral ketamine for controlling pain and distress during intravenous cannulation in children: a double-blind, randomized, placebo-controlled trial

  • Bagheri, Mahdi;Soltani, Alireza Ebrahim;Qorbani, Mostafa;Sureda, Antoni;Faghihi, Toktam
    • The Korean Journal of Pain
    • /
    • v.35 no.3
    • /
    • pp.311-318
    • /
    • 2022
  • Background: Ketamine is widely used in infants and young children for procedural sedation and anesthesia. The aim of this study was to evaluate the efficacy and safety of low dose oral ketamine to control pain and distress in children during intravenous (IV) cannulation. Methods: This is a prospective, randomized, double-blind study, including children aged between 3 and 6 years requiring a non-emergent IV-line placement. Children were randomly assigned to two groups, treated either with oral ketamine or a placebo. All patients were monitored for vital signs. Pain was assessed using the Children's Hospital of Eastern Ontario Pain Scale (CHEOPS) and Wong-Baker Faces Pain Rating Scale (WBFS) scales and sedation using a 5-point sedation score. The facility of IV-line placement was measured by a 3-point scale. Adverse effects were recorded after 1 and 24 hours. Results: A total of 79 and 81 children were entered in the ketamine and placebo groups, respectively. The heart and respiratory rates increased significantly in the placebo group. The median CHEOPS 4 (95% confidence interval [CI]: 3, 4, P < 0.001) and WBFS 6 (95% CI: 4, 6, P < 0.001) scores decreased statistically in the ketamine group. IV-line placement was 50% easier in the ketamine group (95% CI: 37%, 63%, P < 0.001). No serious adverse effects were observed in all cases. Conclusions: Low dose oral ketamine effectively decreased the pain and distress during IV cannulation in children without any significant adverse reactions.