DOI QR코드

DOI QR Code

Preparation and Characteristics of MWNT/SnO2 Nano-Composite Anode by Homogeneous Precipitation Method

균일 침전법에 의한 MWNT/SnO2 나노복합음극재의 제조

  • Han, Won-Kyu (Division of Materials Science and Engineering, Hanyang University) ;
  • Choa, Yong-Ho (Department of Fine Chemical Engineering, Hanyang University) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Technology) ;
  • Cho, Jin-Ki (Department of advanced materials Engineering, Korea Polytechnic University) ;
  • Kang, Sung-Goon (Division of Materials Science and Engineering, Hanyang University)
  • 한원규 (한양대학교 신소재공학부) ;
  • 좌용호 (한양대학교 정밀화학공학과) ;
  • 오승탁 (서울산업대학교 신소재공학과) ;
  • 조진기 (한국 산업기술 대학교 신소재 공학부) ;
  • 강성군 (한양대학교 신소재공학부)
  • Published : 2008.04.30

Abstract

Multi-walled carbon nanotube (MWNT)/$SnO_2$ nano-composite (MSC) for the anode electrode of a Li-ion battery was prepared using a homogeneous precipitation method with $SnCl_2$ precursors in the presence of MWNT. XRD results indicate that when annealed in Ar at $400^{\circ}C$, $Sn_6O_4(OH)_4$ was fully converted to $SnO_2$ phases. TEM observations showed that most of the $SnO_2$ nanoparticles were deposited directly on the outside surface of the MWNT. The electrochemical performance of the MSC electrode showed higher specific capacities than a MWNT and better cycleability than a nano-$SnO_2$ electrode. The electrochemical performance of the MSC electrode improved because the MWNT in the MSC electrode absorbed the mechanical stress induced from a volume change during alloying and de-alloying reactions with lithium, leading to an increase in the electrical conductivity of the composite material.

Keywords

References

  1. T. Tran, J. Feikert, X. Song and K. Kinosbita, J. Electrochem. Soc. 142, 3297 (1995) https://doi.org/10.1149/1.2049977
  2. Y. Idota, A. Matsufuji,Y. Mackawa and T.Miyasaka, Science, 276, 1395 (1997) https://doi.org/10.1126/science.276.5317.1395
  3. I. Rom, M. Wachtler, I. Papst, M. Chimed, J.O. Besenhard, F. Hofer and M. Winter, Solid State Ionics, 143, 329 (2001) https://doi.org/10.1016/S0167-2738(01)00886-4
  4. W.J. Weydanz, M. Wohlfahrt-Mehrens and R.A.Huggins, J. PowerSources, 81, 237 (1999) https://doi.org/10.1016/S0378-7753(99)00139-1
  5. B. Kim, H. Park and W. M. Sigmund, Colloid Surface A, 256, 123 (2005) https://doi.org/10.1016/j.colsurfa.2004.12.063
  6. Y. -H. Li, S. Wang, Z. Luan, J. Ding, C. Xu and D. Wa, Carbon, 41, 1057 (2003) https://doi.org/10.1016/S0008-6223(02)00440-2
  7. I. A. Courtney and J. R. Dahn, J. Electrochem. Soc., 144, 2943 (1997) https://doi.org/10.1149/1.1837941
  8. I. A. Courtney, W. R. McKinnon and J. R. Dahn, J. Electrochem. Soc., 146, 59 (1999) https://doi.org/10.1149/1.1391565
  9. W. Chen, J. Y. Lee and Z. Liu, Electrochem Commun, 4, 260 (2002) https://doi.org/10.1016/S1388-2481(02)00268-0
  10. E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy and F. Beguin, Carbon, 37, 61 (1999) https://doi.org/10.1016/S0008-6223(98)00187-0