• Title/Summary/Keyword: Stress Parameters

Search Result 3,192, Processing Time 0.031 seconds

Stress- Strain Behavior Characteristics of Single Work Hardening Model Dependant on the Stress Path (응력경도에 따른 단일항복면구성모델의 응력-변형률 거동 특성)

  • 정진섭;김찬기;박을축
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.70-81
    • /
    • 1996
  • Solutions of geotechnical engineering problems require predictions of deformation and stresses during various stages of loading. Powerful numerical methods are available to make such predictions even for complicated problems. To get accurate results, realistic stress-strain relationships of soils are dependent on a number of factors such as soil type, density, stress level and stress path. Attempts are continuously being made to develope analytical models for soils incorporating all such factors. Isotropic compression-expansion test and a series of drained conventional triaxial tests with several stress path for Baekma river sand were performed to investigate stress-strain and volume change characteristics of Lade's single work hardening model dependant on the stress path. In order to predicted of stress-strain and volumetric strain behavior were determined the values of parameters for the mode by the computer program based on the regression analysis. Predicted stress-strain behavior of triaxial compression tests and optional stress path tests for increasing confining pressure with parameters obtained conventional triaxial compression tests agreed with several test results but the prediction results for decreasing confining pressure reduced triaxial compression tests make a little difference with test results.

  • PDF

Stress Analysis of a Clamp Chuck for Machining of a Ring Gear (링기어 절삭을 위한 클램프 척의 응력해석)

  • Sim, Han-Sub;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.73-78
    • /
    • 2011
  • This study contains to theory and analysis research for the stress and the translation of an expand disk that fix a ring gear for tooth profile machining. The stress of the expand disk is analysed by the finite element method(FEM) to calculate design parameters. From the analysis results, the stress of the expand shows a linear tendency under various fixing force. This results show that the expand disk have a elastic characteristics as a disk spring. The maximum stress was observed on under side in split section of the expand disk. It is verified that the analysis results are useful to calculate design parameters of the expand disk.

Probabilistic Analysis of Liquefaction Cyclic Stress Ratio Considering Soil Variability (지반변동성을 고려한 액상화 진동전단응력비의 확률론적 해석)

  • Heo, Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • The objective of this study is to evaluate the liquefaction cyclic shear stress ratio considering the soil uncertainty. In this study, the probabilistic ground response analysis and the cyclic shear stress ratio analysis for the liquefaction potential evaluation are performed considering the soil variability. The statistical properties of input ground parameters were analyzed to investigate the parameters affecting the seismic response analysis. The Probabilistic analysis was carried out by Monte Carlo Simulation method. The ground response analysis was performed considering the soil variability and the probability distribution characteristics of the ground acceleration. The probability distribution of the peak ground acceleration by seismic characteristics was presented. The differences of liquefaction shear stress ratio results according to soil variability were compared and analyzed. The maximum acceleration of the ground by the deterministic method was analyzed to be overestimation of the ground amplification phenomenon. Also, the shear stress ratio was overestimated.

The Effects of the Drive-in Process Parameters on the Residual Stress Profile of the p+ Thin Film (후확산 공정 조건이 p+ 박막의 간류 응력 분포에 미치는 영향)

  • Park, T.G.;Jeong, O.C.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1007-1009
    • /
    • 1998
  • In this paper, the effects of the drive-in process parameters on the residual stress profile of the p+ silicon film has been investigated. All the residual stress profile has been estimated by the second-order polynomial. All the coefficients of the polynomial have been determined from the measurement of the deflections of cantilevers and a rotating beam by using a surface profiler meter and by means of focusing a calibrated microscope. As the drive-in temperature or the drive-in time increases, the boron concentration decreases and the magnitude of the average residual stress decreases. If the boron concentration decreases the tensile residual stress decreases except near the surface where the magnitude of compressive residual stress increases.

  • PDF

Optimal three step-stress accelerated life tests for Type-I hybrid censored data

  • Moon, Gyoung Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.1
    • /
    • pp.271-280
    • /
    • 2015
  • In this paper, the maximum likelihood estimators for parameters are derived under three step-stress accelerated life tests for Type-I hybrid censored data. The exponential distribution and the cumulative exposure model are considered based on the assumption that a log quadratic relationship exits between stress and the mean lifetime ${\theta}$. The test plan to search optimal stress change times minimizing the asymptotic variance of maximum likelihood estimators are presented. A numerical example to illustrate the proposed inferential procedures and some simulation results to investigate the sensitivity of the optimal stress change times by the guessed parameters are given.

Determination of Stress Intensity Factor $K_I$ from Two Fringe Orders by Fringe Multiplication and Sharpening

  • Chen, Lei;Baek, Tae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.6
    • /
    • pp.550-555
    • /
    • 2007
  • Stress intensity factor is one of the most important parameters in fracture mechanics. Both the stress field distribution and the crack propagation are closely related to these parameters. Due to the complexity of actual engineering problems, it is difficult to calculate the stress intensity factor by theoretical formulation, so photoelasticity method is a good choice. In this paper, modified two parameter method is employed to calculate stress intensity factor for opening mode by using data from more than one photoelastic fringe loop. For getting accurate experiment results, the initial fringes are doubled and sharpened by digital image programs from the fringe patterns obtained by a CCD camera. Photoelastic results are compared with those obtained by the use of empirical equation and FEM. Good agreement shows that the methods utilized in experiments are considerably reliable. The photoelastic experiment can be used for bench mark in theoretical study and other experiments.

THE EFFECT OF INTERNAL STRESS ON THE SOFT MAGNETIC PROPERTIES OF PERMALLOY THIN FILMS

  • Kim, Hyun-Tae;Kim, Sang-Joo;Han, Suk-Hee;Kim, Hi-Jung;Kang, Il-Koo
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.533-537
    • /
    • 1995
  • The stress in Permalloy thin films fabricated by rf magnetron sputtering on the Si (100) substrates has been investigated with various deposition parameters such as the film thickness, argon pressure, and rf power. The internal stress changes from compressive to tensile with higher input power and argon pressure. The cause of stress variations with these deposition parameters is discussed in terms of thermal and/or intrinsic stress changes. Low coercive force is obtained from Permalloy thin films at a condition of low compressive stress.

  • PDF

Parametric study for influential factors on unbonded tendon stress increase (비부착 긴장재의 응력 변화에 영향을 미치는 변수에 관한 고찰)

  • 이선화;문정호;임재형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.651-656
    • /
    • 2000
  • The strain compatibility analysis shows that the influential parameters of loading type, reinforcing ratio, and span-depth ratio affect on the tendon stress in unbonded prestresses concrete member significantly. However, existing test results did not comply exactly with the analytical results. In consequence, the present study was planned to examine the parameters in order to complete Moon/Lim's design equation. The test variables with 12 specimens were loading type, reinforcing ratio, and span-depth ratio. As results, the effect of influential parameters were examined throughly and Moon/Lim's design equation was proven to be accurate.

  • PDF

Thermal Shock Tests and Thermal Shock Parameters for Ceramics

  • Awaji, Hideo;Choi, Seong-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.385-396
    • /
    • 2012
  • Thermal shock test methods and thermal shock parameters for ceramics were reviewed from the following viewpoints: (1) The test methods should be based on the precise estimation of both temperature and thermal stress distributions in a specimen taking into account the temperature-dependent thermo-mechanical properties; (2) The thermal shock parameters must be defined as a physical property of the materials and described as a function of temperature at the fracture point of the specimen; (3) The relation between the strength and fracture toughness of brittle ceramics under a thermal shock load must be the same as the relation under a mechanical load. In addition, appropriate thermal shock parameters should be defined by the thermal shock strength and thermal shock fracture toughness based on stress and energy criteria, respectively. A constant heat flux method is introduced as a testing technique suitable for estimating these thermal shock parameters directly from the electric power charged.

OPTIMIZATION OF PARAMETERS IN BIOLOGICAL SYSTEMS OF DELAY DIFFERENTIAL EQUATIONS

  • Choo, S.M.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.811-818
    • /
    • 2008
  • Biological systems with both protein-protein and protein-gene interactions can be modeled by differential equations for concentrations of the proteins with time-delay terms because of the time needed for DNA transcription to mRNA and translation of mRNA to protein. Values of some parameters in the mathematical model can not be measured owing to the difficulty of experiments. Also values of some parameters obtained in a normal stress condition can be changed under pathological stress stimuli. Thus it is important to find the effective way of determining parameters values. One approach is to use optimization algorithms. Here we construct an optimal system used to find optimal parameters in the equations with nonnegative time delays and apply this optimization result to the Nuclear factor-${\kappa}B$ pathway.

  • PDF