• Title/Summary/Keyword: Stress Parameters

Search Result 3,202, Processing Time 0.031 seconds

Dietary Selection of Fat by Heat-stressed Broiler Chickens

  • Zulkifli, I.;Htin, Nwe Nwe;Alimon, A.R.;Loh, T.C.;Hair-Bejo, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.245-251
    • /
    • 2007
  • A total of 160 d-old male broiler chicks (Cobb) were brooded for three weeks and then maintained at $24{\pm}1^{\circ}C$. Commencing from d 21, chicks were assigned to one of four feeding regimens: (1) diet with 8% palm oil (PO), (2) diet with 8% soybean oil (SO), (3) diet without added fat (control), (4) a choice of PO, SO and control (CH). The diets were formulated to maintain a constant ratio of energy and protein. From d 28 to 41, all birds were exposed to $34{\pm}1^{\circ}C$. The PO, SO and CH birds had greater body weight than controls on d 42. The PO but not SO diet reduced mortality rate, body temperature and serum creatine kinase level of broiler chickens during heat exposure. Although the total intake of control, PO and SO diets was not significantly different during heat exposure, the CH birds had lower creatine kinase activity and mortality rate than those provided SO diet but not significantly different from the birds fed control and PO diets. The relative abdominal fat weight and breast intramuscular fat content percentage were significantly lower in the control birds than those of PO, SO and CH groups. There were no significant differences in both parameters among the three latter groups. These findings suggest that the uncertainty of how much dietary fat to put into diets for heat stressed broilers can be overcome by allowing them to select their own consumption.

Numerical Investigation of Micro Thermal Imprint Process of Glassy Polymer near the Glass Transition Temperature (열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링과 해석)

  • Lan, Shuhuai;Lee, Soo-Hun;Lee, Hye-Jin;Song, Jung-Han;Sung, Yeon-Wook;Kim, Moo-Jong;Lee, Moon-G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.45-52
    • /
    • 2009
  • The research on miniature devices based on non-silicon materials, in particular polymeric materials has been attracting more and more attention in the research field of the micro/nano fabrication in recent years. Lost of applications and many literatures have been reported. However, the study on the micro thermal imprint process of glassy polymer is still not systematic and inadequate. The aim of this research I to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature (Tg). An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model form the test data. As a result, the feasibility of the established viscoelastic model for PC near Tg was confirmed and this material model can be used in FE analysis for the prediction and improvement of the micro thermal imprint process for pattern replication.

  • PDF

Artocarpus chaplasha: Establishment and Initial Growth Performance at Elevated Temperature and Saline Stresses

  • Rahman, Md. Siddiqur;Al-Amin, M.;Akter, Salena
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • Like any other natural resources, forest flora may experience the extreme threat of elevated temperature and saline water submergence at different stages of their lives i.e. from germination to maturity due to climate change effects. The overall aim of the study was to measure the effect of higher temperatures along with saline water irrigation on survival and initial growth during seedling stage of Artocarpus chapalasha. The experiment was conducted in temperature- humidity-photoperiod regulated plant growth chamber during stipulated period to measure the growth performance of randomly selected seedlings. Within three different elevated temperatures viz. $30^{\circ}C$, $32^{\circ}C$ and $34^{\circ}C$, the seedlings were given three different saline conditions such as 0.5 g/L, 1.5 g/L and 2.5 g/L NaCl concentrations. Results found from the experiment was that, seedlings of Artocarpus chaplasha reared at different temperatures and saline water treatments showed stunted growth than reared at existing outdoor temperature ($26.31^{\circ}C$) irrigated with regular fresh water. Seedling growth at three different parameters such as height, collar diameter and number of leaves showed that with increasing temperature individuals respond negatively to increasing saline condition. The seedling's growth occurred at every day in height, collar diameter and leaf. However, growth rate reduced later during the observation. The combined effect of high salinity and higher elevated temperature results in seedling mortality. Therefore, Artocarpus chaplasha may not thrive at higher temperature and salinity intrusion at its early growing period in plantation and natural forest areas.

Analytical model of corrosion-induced cracking of concrete considering the stiffness of reinforcement

  • Bhargava, Kapilesh;Ghosh, A.K.;Mori, Yasuhiro;Ramanujam, S.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.6
    • /
    • pp.749-769
    • /
    • 2003
  • The structural deterioration of concrete structures due to reinforcement corrosion is a major worldwide problem. Service life of the age-degraded concrete structures is governed by the protective action provided by the cover concrete against the susceptibility of the reinforcement to the corrosive environment. The corrosion of steel would result in the various corrosion products, which depending on the level of the oxidation may have much greater volume than the original iron that gets consumed by the process of corrosion. This volume expansion would be responsible for exerting the expansive radial pressure at the steel-concrete interface resulting in the development of hoop tensile stresses in the surrounding cover concrete. Once the maximum hoop tensile stress exceeds the tensile strength of the concrete, cracking of cover concrete would take place. The cracking begins at the steel-concrete interface and propagates outwards and eventually resulting in the through cracking of the cover concrete. The cover cracking would indicate the loss of the service life for the corrosion-affected structures. In the present paper, analytical models have been developed considering the residual strength of the cracked concrete and the stiffness provided by the combination of the reinforcement and expansive corrosion products. The problem is modeled as a boundary value problem and the governing equations are expressed in terms of the radial displacement. The analytical solutions are presented considering a simple 2-zone model for the cover concrete viz. cracked or uncracked. A sensitivity analysis has also been carried out to show the influence of the various parameters of the proposed models. The time to cover cracking is found to be function of initial material properties of the cover concrete and reinforcement plus corrosion products combine, type of rust products, rate of corrosion and the residual strength of the cover concrete. The calculated cracking times are correlated against the published experimental and analytical reference data.

Tethers tension force effect in the response of a squared tension leg platform subjected to ocean waves

  • El-gamal, Amr R.;Essa, Ashraf;Ismail, Ayman
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.327-342
    • /
    • 2014
  • The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy's linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark's beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e., 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.

Rating of steel bridges considering fatigue and corrosion

  • Lalthlamuana, R.;Talukdar, S.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.5
    • /
    • pp.643-660
    • /
    • 2013
  • In the present work, the capacity ratings of steel truss bridges have been carried out incorporating dynamic effect of moving vehicles and its accumulating effect as fatigue. Further, corrosion in the steel members has been taken into account to examine the rating factor. Dynamic effect has been considered in the rating procedure making use of impact factors obtained from simulation studies as well as from codal guidelines. A steel truss bridge has been considered to illustrate the approach. Two levels of capacity ratings- the upper load level capacity rating (called operating rating) and the lower load level capacity rating (called inventory rating) were found out using Load and Resistance Factor Design (LRFD) method and a proposal has been made which incorporates fatigue in the rating formula. Random nature of corrosion on the steel member has been taken into account in the rating by considering reduced member strength. Partial safety factor for each truss member has been obtained from the fatigue reliability index considering random variables on the fatigue parameters, traffic growth rate and accumulated number of stress cycle using appropriate probability density function. The bridge has been modeled using Finite Element software. Regressions of rating factor versus vehicle gross weight have been obtained. Results show that rating factor decreases when the impact factor other than those in the codal provisions are considered. The consideration of fatigue and member corrosion gives a lower value of rating factor compared to those when both the effects are ignored. In addition to this, the study reveals that rating factor decreases when the vehicle gross weight is increased.

Design of a Nuclear Fuel Spacer Grid Considering Impact and Wear (충격과 마모를 고려한 원자로 핵연료봉 지지격자의 설계)

  • Lee, Hyun-Ah;Kim, Chong-Ki;Song, Kee-Nam;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.999-1008
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods safely. Therefore, the spacer grid set should have sufficient strength for the external impact forces such as earthquake. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to flow-induced vibration. Conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined for the impact load and the fretting wear, and corresponding design parameters are selected. The overall flow of design is defined according to the application of axiomatic design. Design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. The deformation of a structure is called homologous if a given geometrical relationship holds before, during, and after the deformation. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis.

A Method of Measuring the Plastic Properties of Materials using Spherical Indentation (Spherical Indentation 실험을 이용한 재료 소성 물성치 측정방법)

  • Li, Guanghe;Kang, Yoon-Sik;Xi, Chen;Park, Tae-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.353-360
    • /
    • 2010
  • In this paper, an efficient algorithm is established in order to estimate the plastic properties of power-law hardening bulk specimen materials with one simple spherical indentation impression test. This work is based on a new formulation of representative strain and, therefore, compare to the preceding approaches the fitting parameters are significantly reduced. Moreover, the new definition of representative strain endowed more physical meaning to the representative strain. In order to verify the reliability of the reverse analysis, we have studied a broad set of materials whose property ranges cover essentially all engineering metals and alloys. Based on the indentation force-displacement P-${\delta}$ curves obtained from numerical simulations, the characteristics of the indentation response and material elastoplastic properties are bridged via explicit functions. Next, through the procedure of reverse analysis the yield stress and power-law hardening exponent of bulk specimen materials can be determined. Finally, good agreement between the result from reverse analysis and initial input data from experiment can be observed.

Correlation of the Nutritional Status of Antioxidant Vitamins and Serum Lipids and MDA Levels in Postmenopausal Women (폐경기 여성의 항산화 비타민 영양 상태와 혈중 지질 및 MDA 농도와의 관계)

  • Kim Sang-Yeon;Jung Kyung-Ah
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.16 no.2
    • /
    • pp.145-155
    • /
    • 2006
  • This study investigated the correlation of the nutritional status of antioxidant vitamins and serum lipids and MDA levels in postmenopausal women. Data about general characteristics, dietary intakes and biochemical parameters, including serum lipids, MDA and antioxidant vitamins levels, were collected from 85 postmenopausal women. The subjects were classified into three groups according to their serum total cholesterol level: normocholesterolemia group (NC, < 200 mg/dL), moderate hypercholesterolemia group (MC, $200{\sim}239mg/dL$) and hypercholesterolemia group(HC, ${\geq}240mg/dL$). The results are as follows. 1) General characteristics and serum MDA levels were not significantly different among the three groups. 2) Daily nutrients intakes adjusted to energy intake were not significantly different among the three groups, and were compatible with dietary reference intakes (DRIs) for Koreans. 3) Dietary Vt. A, ${\beta}-carotene$, Vt. C and Vt. E intake were not significantly different among the groups, while Vt. E intake was positively related with serum TC (r=0.288, p<0.05) and triglyceride (r=0.341, p<0.001) levels. 4) Serum Vt. A level standardized by serum TC level was significantly low and serum Vt. E level was significantly high in the HC group. Serum Vt. E level was positively related with serum TC level (r=0.389, p<0.001). 5) Dietary Vt. E intake was negatively correlated to serum MDA level (r=-0.242 p<0.05). Serum Vt. C and Vt. E levels were also negatively correlated to serum MDA level (r=-0.312, p<0.001 and r=-0.299, p<0.05). When the correlation was analyzed only in the group with hypercholesterolemia, correlation coefficients between the antioxidant vitamin and serum MDA level were higher. We concluded that intakes of antioxidant vitamins can contribute to decreasing the risk of cardiovascular disease by decreasing the oxidative stress of body rather than by controlling serum lipid levels.

  • PDF

Analysis of the variability of deflection of a prestressed composite bridge deck

  • Staquet, Stephanie;Detandt, Henri;Espion, Bernard
    • Steel and Composite Structures
    • /
    • v.4 no.5
    • /
    • pp.385-402
    • /
    • 2004
  • Nearly 400 composite railway bridge decks of a new kind belonging to the trough type with U-shaped cross section have been constructed in Belgium over the last fifteen years. The construction of these bridge decks is rather complex with the preflexion of precambered steel girders, the prestressing of a concrete slab and the addition of a 2nd phase concrete. Until now, they have been designed with a classical computation method using a pseudo-elastic analysis with modular ratios. Globally, they perform according to the expectations but variability has been observed between the measured and the computed camber of these bridge decks just after the transfer of prestressing and also at long-term. A statistical analysis of the variability of the relative difference between the measured camber and the computed camber is made for a sample of 36 bridge decks using no less than 10 variables. The most significant variables to explain this variability at prestressing are the ratio between the maximum tensile stress reached in the steel girders during the preflexion and the yield strength and the type of steel girder. For the same sample, the long-term camber under permanent loading is computed by two methods and compared with measurements taken one or two years after the construction. The camber computed by the step-by-step method shows a better agreement with the measured camber than the camber computed by the classical method. The purpose of the paper is to report on the statistical analysis which was used to determine the most significant parameters to consider in the modeling in order to improve the prediction of the behaviour of these composite railway bridge decks.