• 제목/요약/키워드: Stress Method

검색결과 10,658건 처리시간 0.03초

브래킷 결합형식에 따른 용접 구조물의 파이프에서 발생하는 응력분포와 응력집중에 관한 연구 (A Study on the Stress Distribution and Stress Concentration of Pipe with Respect to Attached Shape and Method of the Bracket in a Welding Structure)

  • 전형용;성낙원;한근조
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.28-37
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method and test for considering stress distribution and stress concentration to be generated according to the change of attached shape and method of the bracket to pipe in welding structure. Generally, members that consist structures are subjected to various forces and are jointed each other with a number of bracket. In this case, circular pipe was adapted in order to weld these members easily and to study the optimal design which is used a beam with shape section as main components of the structure, According to attached shape and method, distributed stress on circular pipe is appeared so differently. This may result deeply effects with respect to thickness, material properties. So a study on attaching shape and method of bracket to circular pipe is needed. In this paper, to obtain the maximum equivalent stress or stress concentration was used experimental and F.E.M. analysis. First five parameter was defined with respect to attached a shape and method to circular pipe i.e. the variation of the attached area, the variation of the attached shape, the variation of the attached length, the variation of both directin angles, the variation of the upper angle. Afterward the experimental analysis was practiced as the variation of the both direction angel and the finite element analysis was practiced as each parameters. We can discover stress distribution and stress concentration according to the change of form of bracket. And the result can be referenced for a design of similar structure.

  • PDF

일부지역 아동의 스트레스 지각정도와 스트레스 대처 행동의 차이 (Differences of Perceived Stress Level and Stress Coping Behavior among School Children)

  • 김숙
    • 한국학교보건학회지
    • /
    • 제16권1호
    • /
    • pp.55-66
    • /
    • 2003
  • This study was conducted to evaluate the differences of perceived stress level and stress coping behavior for 360 elementary school children in rural area and 360 in urban area. The questionnaire survey was done from December 10 to December 20, 2001. The results were as follows: 1. There was no significant difference of perceived stress level between rural and urban areas, but there were significant difference of stress coping behavior between them. 2. Significant difference of perceived stress level and stress coping behavior among groups of grade was found. 3. There was significant difference of perceived stress level and stress coping behavior between male and female. 4. There was significant difference of stress coping behavior according to perceived stress levels In conclusion, perceived stress level and stress coping behavior in elementary school children were different according to their grade and sex. It is important to teach them proper stress coping method, depending on their grade and sex. But, we have to focus on the development and application of stress self-control program, which enables children to cope with stress for themselves. Based on: 1. Before starting the study, the subjects should be examined about whether they have ever been on stress education program before or not. 2. The educational environments and the development and implementation of teaching program for the proper stress coping method are needed. 3. This study was performed through the questionnaire for perceived stress level and stress coping behavior, but various methods like observation, person-to-person interview should be used for the further in-depth study.

다점선정법에 의한 편심 및 굴절균열의 응력확대계수의 결정 (Determination of stress intensity factors of bent and eccentric cracks by multi-point selection method)

  • 김종주;서인보;최선호
    • 대한기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.1079-1086
    • /
    • 1990
  • 본 연구에서는 모아레 경사격자법(moire tilted master grating method)을 개 발하여 그 유용성을 확인하고 이를 굴절 및 편심균열의 응력확대계수의 해석에 확대 적용하여 다점선정법의 적용범위를 넓히고, 또 분포균열 및 임의 형균열의 해석 가능 성을 타진하여 완성된 실험법으로서의 위치를 구축하는데 목적이 있다.

응력특이성을 고려한 접착이음의 강도평가 방법 (Evaluation Method of Bonded Strength Considering Stress Singularity in Adhesively Bonded Joints)

  • 정남용
    • 한국생산제조학회지
    • /
    • 제7권1호
    • /
    • pp.58-68
    • /
    • 1998
  • Advantages of adhesively bonded joints and techniques of weight reduction have led to increasing use of structural adhesives such as LSI(large scale integration) package, automobile, aircraft in the various industries. In spite of such wide applications of adhesively bonded joints, the evaluation method of bonding strength has not been established. Stress singularity occurs at the interface edges of adhesively bonded joints and it is required to analyze it. In this paper, the stress singularity using 2-dimensional elastic boundary element method (BEM) with the changes of the lap length and adhesive for single lap joint was analyzed, and experiments of strength evaluation were carried out. As the results, the evaluating method of bonding strength considering stress singularity at interface edges of adhesively bonded joints and stress intensity factor of interface crack have been proposed in static and fatigue test.

  • PDF

소결법에 의한 $ZrO_2/Metal$계 경사기능재료에 관한 연구(II) (A Study on Zirconia/Metal Functionally Gradient Materials by Sintering Method(II))

  • 정연길;최성철
    • 한국세라믹학회지
    • /
    • 제32권1호
    • /
    • pp.120-130
    • /
    • 1995
  • To analyze the mechanical property and the residual stress in functionally gradient materials(FGMs), disctype TZP/Ni-and TZP/SUS304-FGM were hot pressed using powder metallurgy compared with directly bonded materials which were fabricated by the same method. The continuous interface and the microstructure of FGMs were characterized by EPMA, WDS, optical microscope and SEM. By fractography, the fracture behavior of FGMs was mainly influenced by the defects which originated from the fabrication process. And the defectlike cracks in the FGMs induced by the residual stress have been shown to cause failure. This fact has well corresponded to the analysis of the residual stress distribution by Finite Element Method (FEM). The residual stress generated on the interface (between each layer, and matrix and second phase, respectively) were dominantly influenced on the sintering temperature and the material constants. As a consequence, the interfacial stability and the relaxation of residual stress could be obtained through compositional gradient.

  • PDF

Benchmark Modal Stress-Resultant Distributions for Vibrating Rectangular Plates with Two Opposite Edges Free

  • Y. Xiang;Wang, C.M.;T. Utsunomiya;C. Machimdamrong
    • Computational Structural Engineering : An International Journal
    • /
    • 제1권1호
    • /
    • pp.49-57
    • /
    • 2001
  • This paper presents exact solutions for the modal stress-resultant distributions for vibrating rectangular Mindlin plates involving two opposite sides simply supported while the other two sides free. These exact stress-resultants of vibrating plates with free edges, hitherto unavailable, are very important because they serve as benchmark solutions for checking numerical solutions and methods. Using the exact solutions of a square plate, this paper highlights the problem of determining accurate stress-resultants, especially the transverse shear forces and twisting moments in thin plates, when employing the widely used numerical methods such as the Ritz method and the finite element method. Thus, this study shows that there is a need for researchers to develop refinements to the Ritz method and the finite element method for determining very accurate stress-resultants in vibrating plates with free edges.

  • PDF

FEM Analysis of Plasticity-induced Error on Measurement of Welding Residual Stress by the Contour Method

  • Shin, Shang-Hyon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권10호
    • /
    • pp.1885-1890
    • /
    • 2005
  • The contour method relies on deformations that occur when a residually stressed component is cut along a plane. The method is based on the elastic superposition principle. When plasticity is involved in the relaxation process, stress error in the resulting measurement of residual stress would be caused. During the cutting the specimen is constrained at a location along the cut so that deformations are restrained as much as possible during cutting. With proper selection of the constraining location the plasticity effect can also be minimized. Typical patterns of longitudinal welding residual stress state were taken to assess the plasticity effect along with constraining locations.

3 차원 유한요소법을 이용한 AISI 304 표면용접평판의 잔류응력해석 (Residual Stress Analysis of AISI 304 Surface Welding Plate by 3D Finite Element Method)

  • 이경수;김태룡;김만원;박재학
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.390-395
    • /
    • 2008
  • This study is performed to understand three dimensional characteristics of weld residual stress for the surface weld on the stainless steel plate. AISI 304 plate with one path weld on the surface was used as a test specimen. Finite element analysis was done to analyze thermal transient and residual stress due to weld. The result of finite element analysis was validated by previous paper and measurement data. Among various techniques for residual stress measurement, instrumented ball indentation method was applied. The calculated residual stresses by finite element analysis showed good agreement with the measured results.

  • PDF

Approximation Method for the Calculation of Stress Intensity Factors for the Semi-elliptical Surface Flaws on Thin-Walled Cylinder

  • Jang Chang-Heui
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.319-328
    • /
    • 2006
  • A simple approximation method for the stress intensity factor at the tip of the axial semielliptical cracks on the cylindrical vessel is developed. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite element analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. For these, 3-D finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R=0.1. The approximation solutions are within $\pm2.5%$ of the those of finite element analysis using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the approximation method provides sufficiently accurate stress intensity factor values for the axial semi-elliptical flaws on the surface of the reactor pressure vessel.

이종 마찰용접재의 계면균열에 대한 파괴인성의 평가방법 (An Evaluation Method of Fracture Toughness on Interface Crack in Friction Welded Dissimilar Materials)

  • 정남용;박철희
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.171-177
    • /
    • 2007
  • In this paper, an evaluation method of fracture toughness on interface cracks was investigated in friction welded dissimilar materials with interfacial edge cracks. To establish a reasonable strength evaluation method and fracture criterion, it is necessary to analyze stress intensity factor under the load and residual stress condition on friction welded interface between dissimilar materials. The friction welded specimens with an edged crack were prepared for analysis of stress intensity by using the boundary element method (BEM) and the fracture toughness. A quantitative fracture criterion for friction welded STS 304/SM 45C with interface crack is suggested by using stress intensity factor, F and the results of fracture toughness experiment.