• Title/Summary/Keyword: Stress Corrosion Cracking(SCC)

Search Result 121, Processing Time 0.031 seconds

고온의 염기성 수용액에서 Ni기 합금의 응력부식파괴

  • 김홍표;황성식;국일현;김정수
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.84-89
    • /
    • 1998
  • Alloy 600 및 alloy 690과 Ni-8Cr-lOFe 합금 등의 응력부식(stress corrosion cracking, SCC) 거동을 고온의 염기성 분위기에서 C-ring 시편을 사용하여 연구하였다. Alloy 600과 alloy 690을 여러 조건에서 열처리하여 etching한 후 탄화물의 분포와 입계 주변의 Cr고갈 정도 등의 미세조직을 광학현미경과 주사 전자현미경(SEM)으로 관찰하였다. 이들 재료에 대한 SCC 시험을 315$^{\circ}C$의 40% NaOH 수용액에서 일정한 부하전위(부식전위 + 200㎷)를 가하면서 수행하였으며, 동일 조건에서의 분극거동도 측정하였다. Alloy 600 MA(mill anneal) 및 TT(thermal treatment)의 SCC 저항성은 alloy 690 TT와 Ni-8Cr-10Fe SA(solution anneal)보다 낮았다. Alloy 600 TT 재료는 alloy 600 MA 및 SA 재료에 비해 SCC 저항성이 더 컸다. 고용 탄소농도는 alloy 600의 SCC 저항성에 큰 영향을 주지 못했다. 대부분의 Alloy 600은 균열전파 입계균열을 보였으나, 일부에서는 입계 및 입내 혼합양상(mixed mode cracking)을 보였다. 염기성 분위기에서 Ni기 합금의 SCC 거동을 미세조직, 분극거동의 관점에서 고찰하였다.

  • PDF

The Effect of Temperature on Stress Corrosion Cracking of AI Brass under Flow

  • Lim, Uh-Joh;Jeong, Hae-Kyoo
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.135-140
    • /
    • 2003
  • The effect of temperature on stress corrosion cracking o f Al-brass used in vessel heat exchanger tube was studied in 3.5% NaCI + 0.1% $NH_4OH$ solution. The SCC test using a CDT(constant displacement test) and the specimens using a SEN(single edge notched) specimens. For setting the environment similar to working environment of a heat exchanger, the specimens was immersed in solution and solution flow onto the specimens were performed. The results are as follows : The latent time of stress corrosion crack occurrence gets shorter, as the temperature gets higher. Dezincification phase showed around the crack occupy wider range, as the temperature gets higher. Zn composition falls under 4% at the dezincifiction area.

PbSCC of Ni-base Alloys in PbO-added Pure Water

  • Kim, Joung Soo;Yi, Yong-Sun;Kwon, Oh Chul;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.316-321
    • /
    • 2007
  • The effect of annealing on the pitting corrosion resistance of anodized Al-Mg alloy (AA5052) processed by equal-channel angular pressing (ECAP) was investigated by electrochemical techniques in a solution containing 0.2 mol/L of $AlCl_3$ and also by surface analysis. The Al-Mg alloy was annealed at a fixed temperature between 473 and 573 K for 120 min in air after ECAP. Anodizing was conducted for 40 min at $100-400A/m^2$ at 293 K in a solution containing 1.53 mol/L of $H_2SO_4$ and 0.0185 mol/L of $Al_2(SO_4)_3$. The internal stress generated in anodic oxide films during anodization was measured with a strain gauge to clarify the effect of ECAP on the pitting corrosion resistance of anodized Al-Mg alloy. The time required to initiate the pitting corrosion of anodized Al-Mg alloy was shorter in samples subjected to ECAP, indicating that ECAP decreased the pitting corrosion resistance. However, the pitting corrosion resistance was greatly improved by annealing after ECAP. The time required to initiate pitting corrosion increased with increasing annealing temperature. The strain gauge attached to Al-Mg alloy revealed that the internal stress present in the anodic oxide films was compressive stress, and that the stress was larger with ECAP than without. The compressive internal stress gradually decreased with increasing annealing temperature. Scanning electron microscopy showed that cracks occurred in the anodic oxide film on Al-Mg alloy during initial corrosion and that the cracks were larger with ECAP than without. The ECAP process of severe plastic deformation produces large internal stresses in the Al-Mg alloy; the stresses remain in the anodic oxide films, increasingthe likelihood of cracks. It is assumed that the pitting corrosion is promoted by these cracks as a result of the higher internal stress resulting from ECAP. The improvement in the pitting corrosion resistance of anodized AlMg alloy as a result of annealing appears to be attributable to a decrease in the internal stresses in anodic oxide films

Laser Peening Process and Its Application Technique (레이저 피닝 처리 및 적용 기술)

  • Kim, Jong-Do;KUTSUNA, Muneharu;SANO, Yuji
    • Journal of Welding and Joining
    • /
    • v.33 no.4
    • /
    • pp.1-6
    • /
    • 2015
  • Advances in laser technology have yielded a multitude of innovative processes and applications in various industries. Laser peening is a typical example invented in the mid-1990s as a surface technology, which converted residual stress from tension to compression by just irradiating successive laser pulses to metallic materials under aqueous environment without any surface preparation. The effects of laser peening have been experimentally studied on residual stress, stress corrosion cracking(SCC) susceptibility and fatigue properties with water-penetrable frequency-doubled Nd:YAG laser. In addition, laser peening has been widely used in aviation and aerospace industries, automobile manufacturing and nuclear plant. One of the most important causes to improve the above-mentioned properties is the deeper compressive residual stress induced by laser peening. Taking advantage of the process without reacting force against laser irradiation, a remote operating system was developed to apply laser peening to nuclear power reactors as a preventive maintenance measure against SCC.

Evaluation of SCC Susceptibility of Weld HAZ in Structural Steel(I) -material properties and strain rate- (강용접부의 응력부식크랙감수성 평가에 관한 연구 I -재료특성과 변형률 속도-)

  • 임재규;정대식;정세희
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.48-60
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environments has been attributed to stress corrosion cracking(SCC)which is resulting from the combined effects of corrosive environments and static tensile stress. Slow strain rate test (SSRT) provides a rapid reliable method to determine SCC susceptibility of metals and alloys for a broad range of application. The chief advantage of SSRT procedures is that it is much more aggressive in producing SCC than conventional constant strain or constant load tests, so that the testing time is considerably reduced. Therefore, in this paper, the combined effects of material properties and strain rate on the tensile ductility and fracture morphology of parents and weldment for SM45C, SCM440 and SM20C steels were examined and discussed in synthetic sea water. The susceptibility of SCC was the most severe under the strain rate of $1.0{\times}10^{-6} sec^{-1}$, and R.O.A. can be used for parent and maximum load for weldment to evaluate the parameter for SCC susceptibility.

  • PDF

Reliability Analysis for Stress Corrosion Cracking of Suspension Bridge Wires (현수교케이블의 응력부식에 관한 신뢰성해석)

  • Taejun;Andrzej S. Nowak
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.537-544
    • /
    • 2003
  • This paper deals with stress corrosion cracking behavior of high strength steel exposed to marine environments. The objective is to determine the time to failure as a function of hydrogen concentration and tensile stress in the wires. A crack growth curve is modeled using finite element method (FEM) program. The coupled hydrogen diffusion-stress analyses of SCC were programmed separately. The first part is calculating stress and stress intensity /sup 1)/factor of a cylindrical shell, prestressing tendon or suspension bridge wires, from the initiation of cracks to rupture. Virtual crack extension method, contour integral method, and crack tip elements are used for the calculation of stresses in front of the crack tip. Comparisons of the result show a good agreement with the analytical equations and wire tests. The second part of the study deals with the programming of hydrogen diffusion, affected by hydrostatic stress, calculated at the location of boundary of plastic area around the crack tip. The results of paper can be used in the design and management of prestressed structures, cable stayed and suspension bridges. Time dependent correlated parallel reliabilities of a cable, composed of 36 wires, were evaluated by the consideration of the deterioration of stress corrosion cracking.

  • PDF

Analysis of Residual and Applied Stresses of Thin-walled U tubes (얇은 두께로 된 U 전열관의 잔류응력 및 부하응력 해석)

  • 김우곤;김대환;류우석;국일현;김성청
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.163-169
    • /
    • 1999
  • Residual stresses causing stress corrosion cracking (SCC) of thin-walled steam generator U tubes were investigated. The residual stresses were measured by hole drilling methods, and the applied stresses resulting from the internal pressure and the temperature gradient in the steam generator were estimated theoretically. In U-bent regions, the residual stresses at extrados were induced with compressive stress(-), and its maximum value reached -319MPa in axial direction at $\phi$= $0^{\circ}$ in position. Maximum tensile residual stress of 170MPa was found to be at the flank side at position of $\phi$= $90^{\circ}$, i.e., at apex region. Hoop stress due to the pressure and temperature differences between primary and secondary side were analyzed to be 76 MPa and 45 MPa, respectively.

  • PDF

PWSCC Growth Assessment Model Considering Stress Triaxiality Factor for Primary Alloy 600 Components

  • Kim, Jong-Sung;Kim, Ji-Soo;Jeon, Jun-Young;Kim, Yun-Jae
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1036-1046
    • /
    • 2016
  • We propose a primary water stress corrosion cracking (PWSCC) initiation model of Alloy 600 that considers the stress triaxiality factor to apply to finite element analysis. We investigated the correlation between stress triaxiality effects and PWSCC growth behavior in cold-worked Alloy 600 stream generator tubes, and identified an additional stress triaxiality factor that can be added to Garud's PWSCC initiation model. By applying the proposed PWSCC initiation model considering the stress triaxiality factor, PWSCC growth simulations based on the macroscopic phenomenological damage mechanics approach were carried out on the PWSCC growth tests of various cold-worked Alloy 600 steam generator tubes and compact tension specimens. As a result, PWSCC growth behavior results from the finite element prediction are in good agreement with the experimental results.

FEM Analysis of Effect of Shot Peening for Stress Corrosion Cracking at Welded Part (용접부 응력부식균열 방지를 위한 쇼트피닝 효과의 유한요소 해석)

  • NAM KI-Woo;AHN SEOK-WHAN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.239-241
    • /
    • 2004
  • Stress intensity factor of semi-circular crack front was calculated by FEM, and also allowable crack size which doesn‘t break out the fracture by SCC in residual stress field of STS materials. Allowable crack size was increased with compressive residual stress provided by shot peening on material surface, and with magnitude of compressive residual stress for depth direction.

  • PDF

Evaluation of Scc Susceptibility of Welded HAZ in Structual Steel(II) -Frcature Behavior in Cathodic Protection- (강 용접부의 응력부식크랙 감수성 평가에 관한 연구 II -음극방식에서의 파괴거동-)

  • 임재규;조정운;나의균
    • Journal of Welding and Joining
    • /
    • v.11 no.3
    • /
    • pp.61-74
    • /
    • 1993
  • The cause of corrosion failure found in structures or various components operating in severe corrosive environment has been attributed to stress corrosion cracking(SCC) which is resulting from the combined effects of corrosive environments and static tensile stress. Cathodic protection is an electrochemical method of corrosion control that is widely used in marine environment and primarily on carbon steel. A number of criteria are used to determine whether or not a structure is cathodically protected. In practice, -0.8V versus Ag/AgCl is the most commonly used for marine structures. This paper showed the combined effects of cathodic potential and slow, monotonic straining on the tensile ductility and fracture morphology of parents and friction welded joints for SM45C, SCM440 and SM20C steels in syntheic sea water(S.S.W.,pH:8.2). For the parent materials in cathodic potentials, the higher tensile strength is, the more susceptible SCC is. And the welded HAZ is more susceptible than the parent materials.

  • PDF