• Title/Summary/Keyword: Stress Concentration Ratio

Search Result 291, Processing Time 0.03 seconds

Seismic retrofit of steel structures with re-centering friction devices using genetic algorithm and artificial neural network

  • Mohamed Noureldin;Masoum M. Gharagoz;Jinkoo Kim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.167-184
    • /
    • 2023
  • In this study, a new recentering friction device (RFD) to retrofit steel moment frame structures is introduced. The device provides both self-centering and energy dissipation capabilities for the retrofitted structure. A hybrid performance-based seismic design procedure considering multiple limit states is proposed for designing the device and the retrofitted structure. The design of the RFD is achieved by modifying the conventional performance-based seismic design (PBSD) procedure using computational intelligence techniques, namely, genetic algorithm (GA) and artificial neural network (ANN). Numerous nonlinear time-history response analyses (NLTHAs) are conducted on multi-degree of freedom (MDOF) and single-degree of freedom (SDOF) systems to train and validate the ANN to achieve high prediction accuracy. The proposed procedure and the new RFD are assessed using 2D and 3D models globally and locally. Globally, the effectiveness of the proposed device is assessed by conducting NLTHAs to check the maximum inter-story drift ratio (MIDR). Seismic fragilities of the retrofitted models are investigated by constructing fragility curves of the models for different limit states. After that, seismic life cycle cost (LCC) is estimated for the models with and without the retrofit. Locally, the stress concentration at the contact point of the RFD and the existing steel frame is checked being within acceptable limits using finite element modeling (FEM). The RFD showed its effectiveness in minimizing MIDR and eliminating residual drift for low to mid-rise steel frames models tested. GA and ANN proved to be crucial integrated parts in the modified PBSD to achieve the required seismic performance at different limit states with reasonable computational cost. ANN showed a very high prediction accuracy for transformation between MDOF and SDOF systems. Also, the proposed retrofit showed its efficiency in enhancing the seismic fragility and reducing the LCC significantly compared to the un-retrofitted models.

An Insight Into the Recycling of Waste Flexible Polyurethane Foam Using Glycolysis

  • Woo Seok Jin;Pranabesh Sahu;Gyuri Kim;Seongrok Jeong;Cheon Young Jeon;Tae Gyu Lee;Sang Ho Lee;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.32-43
    • /
    • 2023
  • The worldwide use of polyurethane foam products generates large amounts of waste, which in turn has detrimental effects on the surroundings. Hence, finding an economical and environmentally friendly way to dispose of or recycle foam waste is an utmost priority for researchers to overcome this problem. In that sense, the glycolysis of waste flexible polyurethane foam (WFPF) from automotive seat cushions using different industrial-grade glycols and potassium hydroxide as a catalyst to produce recovered polyol was investigated. The effect of different molecular weight polyols, catalyst concentration, and material ratio (PU foam: Glycols) on the reaction conversion and viscosity of the recovered polyols was determined. The obtained recovered polyols are obtained as single or split-phase reaction products. Besides, the foaming characteristics and physical properties such as cell morphology, thermal stability, and compressive stress-strain nature of the regenerated flexible foams based on the recovered polyols were discussed. It was observed that the regenerated flexible foams displayed good seating comfort properties as a function of hardness, sag factor, and hysteresis loss compared to the reference virgin foam. With the growing demand for a sustainable and circular economy, a global valorization of glycolysis products from polyurethane scraps can be realized by transforming them into profitable substances.

3-Dimensional Tunnel Analyses for the Prediction of Fault Zones (파쇄대 예측을 위한 터널의 3차원 수치해석)

  • 이인모;김돈희;이석원;박영진;안형준
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.99-112
    • /
    • 1999
  • When there exists a fault zone ahead of the tunnel face and a tunnel is excavated without perceiving its existence, it will cause stress concentration in the region between the tunnel face and the fault zone because of the influence of the fault zone on the arching phenomena. Because the underground structure has many unreliable factors in the design stage, the prediction of a fault zone ahead of the tunnel face by monitoring plans during tunnel construction and the rapid establishment of appropriate support system are required for more economical and safer tunnel construction. Recent study shows that longitudinal displacement changes during excavation due to the change of rock property, and if longitudinal displacement and settlement, which are measured in the field, are considered together in displacement analysis, the prediction of change in rock mass property is possible. This study provided the method for the prediction of fault zones by analyzing the changes of L/C and (Ll-Lr)/C ratio (L= longitudinal displacement at crown, C = settlement at crown, Ll = longitudinal displacement at left sidewall, Lr = longitudinal displacement at right sidewall) and the stereographic projection of displacement vectors which were obtained from the 3-D numerical analysis of hybrid method in various initial stress conditions.

  • PDF

Mechanical Properties of Natural Rubber/Acrylonitrile-Butadiene Rubber Blends and Their Adhesion Behavior with Steel Cords (Natural Rubber/Acrylonitrile-Butadiene Rubber 블렌드의 기계적 물성과 강선과의 접착거동)

  • Sohn, Bong-Young;Nah, Chong-Woon
    • Elastomers and Composites
    • /
    • v.36 no.2
    • /
    • pp.111-120
    • /
    • 2001
  • Mechanical properties and their adhesion behavior with zinc- and brass-plated steel cords of natural rubber/acrylonitrile-butadiene blend compounds were investigated as a function of blend ratio. The Mooney viscosity and stress relaxation time were found to be lowered with increasing NBR content. Tensile modulus generally increased with increasing NBR content. Tensile stress at break stayed constant up to about 40 phr and showed minimum at $50{\sim}60 phr$, and thereafter increased with increasing NBR content. Strain at break decreased linearly below 50 phr, and above the level it showed nearly constant value. Based on the abrupt drops in elastic modulus and tan ${\delta}$ peak, the glass transition temperature of NR and NBR were found to be -55 and $-10^{\circ}C$, respectively. In the case of NR/NBR blend compounds, two distinct transition points were observed and each transition position was not affected by NBR level indicating an incompatible nature of NR/NBR blend system. The pullout force and rubber coverage decreased to the level of about 40% to that of pure m compound, when the 50 phr of NR was replaced by NBR. However, the pure NBR compound showed the comparable adhesion performance with NR(${\sim}90%$). The sulfur concentration was found to become lower with the increased NBR content at the adhesion interface based on the Auger spectrometer results, representing a lack of adhesion layer formation, and this was explained for a possible cause of low adhesion performance with adding NBR.

  • PDF

Effects of light intensity on growth performance, blood components, carcass characteristics, and welfare of broilers

  • Hee-Jin, Kim;Jiseon, Son;Hyun-Soo, Kim;Eui-Chul, Hong;Ji-Hyuk, Kim
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.985-996
    • /
    • 2022
  • This study investigated the effects of light intensity on growth performance, blood components, eye condition, and carcass characteristics of broiler chickens. Three hundred and fifty-two 1-day-old male chicks were assigned to one of four treatments (four repetitions per treatment, 22 birds per repetition) and reared in a floor pen for 5 weeks. From the second week, chicks were reared under four different levels of light intensity (5, 20, 35, and 50 lx) and the lighting duration was maintained at 18-hours light : 6-hours dark (18L : 6D). The feed intake and body weight were measured weekly. At 35 days of age, 12 birds per treatment were randomly selected for blood sampling, eye measurement, and carcass analysis. There were no significant differences in body weight gain, feed intake, and feed conversion ratio among treatments. Triglyceride levels in the serum were significantly higher in the 5 lx treatment, and creatinine was significantly lower in the 5 lx treatment (p < 0.05). The heterophil : lymphocyte ratios decreased significantly as light intensity increased (p < 0.05); however, other blood cell compositions were not affected by light intensity. Interleukin-6 content was significantly higher in the 5 lx treatment than in other treatments (p < 0.05), but the content of tumor necrosis factor-α was not significantly different among treatments. Serum corticosterone concentration was significantly higher at 5 lx than at 20, 35, and 50 lx (p < 0.05). The corneal diameter was the highest in 5 lx treatment (p < 0.05), and tended to increase as the light intensity decreased. Other eye parameters were not significantly different among treatments, but displayed a tendency to increase as the light intensity decreased. Carcass yield and part yields were not affected by light intensity. Meat quality parameters (pH, color, cooking loss, and water-holding capacity) did not show significant difference among the treatments. The results indicate that a light intensity of 5 lx may increase physiological stress or have a negative effect on broiler welfare, even if the performance and carcass characteristics are not affected. Therefore, a light intensity of 20 lx or above is recommended considering both the growth performance and welfare of broilers.

Response of Structural, Biochemical, and Physiological Vegetation Indices Measured from Field-Spectrometer and Multi-Spectral Camera Under Crop Stress Caused by Herbicide (마늘의 제초제 약해에 대한 구조적, 생화학적, 생리적 계열 식생지수 반응: 지상분광계 및 다중분광카메라를 활용하여)

  • Ryu, Jae-Hyun;Moon, Hyun-Dong;Cho, Jaeil;Lee, Kyung-do;Ahn, Ho-yong;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1559-1572
    • /
    • 2021
  • The response of vegetation under the crop stress condition was evaluated using structural, biochemical, and physiological vegetation indices based on unmanned aerial vehicle (UAV) images and field-spectrometer data. A high concentration of herbicide was sprayed at the different growth stages of garlic to process crop stress, the above ground dry matter of garlic at experimental area (EA) decreased about 46.2~84.5% compared to that at control area. The structural vegetation indices clearly responded to these crop damages. Spectral reflectance at near-infrared wavelength consistently decreased at EA. Most biochemical vegetation indices reflected the crop stress conditions, but the meaning of physiological vegetation indices is not clear due to the effect of vinyl mulching. The difference of the decreasing ratio of vegetation indices after the herbicide spray was 2.3% averagely in the case of structural vegetation indices and 1.3~4.1% in the case of normalization-based vegetation indices. These results meant that appropriate vegetation indices should be utilized depending on the types of crop stress and the cultivation environment and the normalization-based vegetation indices measured from the different spatial scale has the minimized difference.

Characterization of Salt Tolerant Rice Mutant Lines Derived from Azetidine-2-Carboxylic Acid Resistant Cell Lines Induced by Gamma Ray Irradiation (AZCA 저항성 돌연변이 세포주로부터 선발 육성만 내염성 벼 돌연변이 계통의 특성 검정)

  • Song, Jae-Young;Kim, Dong-Sub;Lee, Geung-Joo;Lee, In-Sok;Kang, Kwon-Kyoo;Yun, Song-Joong;Kang, Si-Yong
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.61-68
    • /
    • 2007
  • To develop rice (Oryza sativa L.) cultivars to be planted on salt-affected sites, cell lines with enhanced proline content and resistance to growth inhibition by Azetidine-2-carboxylic acid (AZCA), a proline analogue, were screened out among calli irradiated with gamma ray of 50, 70, 90, and 120 Gy. The calli had been derived from embryo culture of the cultivar Donganbyeo. Selected AZCA resistant lines that had high proline accumulation were used as sources for selection of NaCl resistant lines. To determine an optimum concentration for selection of NaCl resistant lines, Donganbyeo seeds were initially cultured on the media containing various NaCl concentrations (0 to 2.5%) for 40 days, and 1.5% NaCl concentration was determined as the optimum concentration. One hundred sixteen salt-tolerant (ST) lines were selected from bulked 20,000 seeds of the AZCA resistant $M_{3}$ seeds in the medium containing 1.5% NaCl. The putative 33 lines ($M_{4}$ generation) considered with salt-tolerance were further analyzed for salt tolerance, amino acid and ion contents, and expression patterns of the salt tolerance-related genes. Out of the 33 lines, 7 lines were confirmed to have superior salt tolerance. Based on growth comparison of the entries, the selected mutant lines exhibited greater shoot length with average 1.5 times, root length with 1.3 times, root numbers with 1.1 times, and fresh weight with 1.5 times than control. Proline contents were increased maximum 20%, 100% and 20% in the leaf, seed and callus, respectively, of the selected lines. Compared to control, amino acid contents of the mutants were 24 to 29%, 49 to 143%, 32 to 60% higher in the leaf, seed and callus, respectively. The ratio of $Na^{+}/K^{+}$ for most of the ST-lines were lower than that of control, ranging from 1.0 to 3.8 for the leaf and 11.5 to 28.5 for the root, while the control had 3.5 and 32.9 in the leaf and root, respectively. The transcription patterns for the P5CS and NHXI genes observed by RT-PCR analysis indicated that these genes were actively expressed under salt stress. The selected mutants will be useful for the development of rice cultivar resistant to salt stress.

Growth and Microsomal ATPase Activity of Lettuce(Lactuca sativa. L.) Cultured in the $KNO_3-Added$ Nutrient Solution (($KNO_3$를 첨가한 양액에서 상추의 생육 및 마이크로솜 ATPase 활성 변화)

  • Lee, Gyeong-Ja;Kang, Bo-Goo;Kim, Hyun-Ju;Min, Kyeong-Beom;Kim, Young-Kee
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.28-33
    • /
    • 2001
  • Lettuces were grown hydroponically in three different nutrient solutions, normal and 30 or 50 mM $KNO_3-added$ nutrient solutions, and the electrical conductivities of the nutrient solutions were 1.0, 4.5, and 6.5 dS/m, respectively. Lettuces grown in the $KNO_3-added$ nutrient solutions showed a decrease in the germination ratio and the lower indices of growth, such as plant height, stem diameter, leaf length, and leaf width. Microsomes were prepared from the roots of lettuce and characteristics of microsomal ATPases were investigated. The activities of microsomal ATPases grown in the 30 mM and 50 mM $KNO_3-added$ nutrient solutions were higher than that grown in the normal nutrient solution. The highest activities of microsomal ATPases were observed at pH 7.0 in all culture conditions. The activities of microsomal ATPases were increased in a reaction buffer solution containing high concentration of $K^+$, whereas they were decreased in a reaction buffer containing $Na^+$. The stimulating effect of $K^+$ in the reaction buffer was greater on the microsomal ATPases of lettuces grown in the $KNO_3-added$ nutrient solutions than that grown in the normal nutrient solution. These results imply that the activities of microsomal ATPases in the root tissue are increased as increasing the $KNO_3$ concentration in the hydroponical nutrient solution.

  • PDF

Transcriptional Regulation of a DNA Repair Gene in Saccharomyces cerevisiae

  • Jang, Yeon-Kyu;Sancar, Gwen-B.;Park, Sang-Dai
    • Proceedings of the Zoological Society Korea Conference
    • /
    • 1998.10b
    • /
    • pp.113-113
    • /
    • 1998
  • In Saccharomyces cerevisiae UV irradiation and a variety of chemical DNA -damaging agents induce the transcription of specific genes, including several involved in DNA repair. One of the best characterized of DNA -damage inducible genes is PHRI, which encodes the apoenzyme for DNA photolyase. Basal-level and damage-induced expression of PHRI require an upstream activation sequence, UASPHRI. Here we report the identification of the UlvIE6 gene of S. cerevisiae as a regulator of UASPHRl activity. Surprisingly, the effect of deletion of UME6 is growth phase dependent. In wild-type cells PHRI is induced in late exponential phase, concomitant with the initiation of glycogen accumulation that precedes the diauxic shift. Deletion of UNIE6 abolishes this induction, decreases the steady-state concentration of photolyase molecules and PHRI mRNA, and increases the UV sensitivity of a rad2 mutant. The results suggest that UM E6 contributes to the regulated expression of a subset of damage-responsive genes in yeast. Furthermore, the upstream repression sequence, URSPHRI, is required for repression and damage-induced expression of PHRl. Here we show identification of YER169W and YDR096W as putative regulators acting through $URS_{PHRI}$. These open reading frames were designated as RPHI (YERl69W) and RPH2 (YDR096W) indicating regulator of PHRI. Simultaneous disruption of both genes showed a synergistic effect, producing a four-fold increase in basal level expression and a similar decrease m the induction ratio following treatment of methyl methanesulfonate(MMS). Mutation of the sequence ($AG_4$) bound by Rphlp rendered the promoter of PHRI insensitive to changes in RPHI or RPH2 status. The data suggest that RPHI and RPH2 act as damage-responsive negative regulators of PHRI. Surprisingly, the sequence bound by Rphlp in vitro is found to be $AG_4$ which is identical to the consensus binding site for the regulators Msn2p and Msn4p involved in stress-induced expression. Deletion of MSN2 and MSN4 has little effect on the induction$.$ ratio following DNA damage. However, all deletions led to a significant decrease in basal-level and induced expression of PHRI. These results imply that MSN2 and MSN4 are positive regulators of P HRI but are not required for DNA damage repression. [Supported by grant from NIH]om NIH]

  • PDF

Response of Growth and photosynthesis to NaCl stress in Soybean(Glysine max L.) Seedlings (NaCl stress에 의한 몇가지 콩 품종들의 생육과 광합성 반응)

  • Cho, Jin-Woong;Kim, Choong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.166-170
    • /
    • 2000
  • This study was conducted in to elucidate the changes of growth characteristics and photosynthesis in three soybean (Glycine max L. cv. Danwonkong, Hwangkeumkong and Kwangankong) 30 day old seedlings to 100mM NaCl concentration containing 1/2 Hoagland's nutrient solution in sand culture. The main stem height and number of main stem node were decreased. thus, leaf area and dry matter were decreased with 100mM NaCl. Growth reduction was less little in Hwangkeumkong than other cultivars. The stem growth rate was affected less than other parts as root or leaf, by NaCl treatment. The specific leaf area (SLA), shoot : root ratio and leaf : root ratio decreased with NaCl solution except for those of Hwangkeumkong. There is no general tendency in leaf thickness by leaf position of three cultivars. The chlorophyll content (SPAD) of the primary and 2nd leaf slightly decreased under NaCl solution but rapidly increased in non-NaCl solution at 15 days after treatments. The photosynthesis, stomatal conductance and transpiration of 2nd leaf positions reduced by NaCl and there were a sigificant correlation between photosynthesis and stomatal conductance or transpiration.

  • PDF