• Title/Summary/Keyword: Stress Based Evaluation

Search Result 866, Processing Time 0.02 seconds

Evaluation of the Crack Tip Fracture Behavior Considering Constraint Effects in the Reactor Pressure Vessel (구속효과를 고려한 원자로 압력 용기의 파괴거동 예측)

  • Kim, Jin-Su;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.908-913
    • /
    • 2000
  • In the process of integrity evaluation for nuclear power plant components, a series of fracture mechanics evaluation on surface cracks in reactor pressure vessel(RPV) must be conducted. These fracture mechanics evaluations are based on stress intensity factor, K. However, under pressurized thermal shock(PTS) conditions, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. Besides, the internal pressure during the normal operation produces high tensile stress at the RPV wall. As a result cracks on inner surface of RPVs may experience elastic-plastic behavior which can be explained with J-integral. In such a case, however, J-integral may possibly lose its validity due to constraint effect. In this paper, in order to verify the suitability of J-integral, two dimensional finite element analyses were applied for various surface crack. Total of 18 crack geometries were analyzed, and Q stresses were obtained by comparing resulting HRR stress distribution with corresponding actual stress distributions. In conclusion, HRR stress fields were found to overestimate the actual crack-tin stress field due to constraint effect.

  • PDF

Structural performance monitoring of an urban footbridge

  • Xi, P.S.;Ye, X.W.;Jin, T.;Chen, B.
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.129-150
    • /
    • 2018
  • This paper presents the structural performance monitoring of an urban footbridge located in Hangzhou, China. The structural health monitoring (SHM) system is designed and implemented for the footbridge to monitor the structural responses of the footbridge and to ensure the structural safety during the period of operation. The monitoring data of stress and displacement measured by the fiber Bragg grating (FBG)-based sensors installed at the critical locations are used to analyze and assess the operation performance of the footbridge. A linear regression method is applied to separate the temperature effect from the stress monitoring data measured by the FBG-based strain sensors. In addition, the static vertical displacement of the footbridge measured by the FBG-based hydrostatic level gauges are presented and compared with the dynamic displacement remotely measured by a machine vision-based measurement system. Based on the examination of the monitored stress and displacement data, the structural safety evaluation is executed in combination with the defined condition index.

EVALUATION OF PRIMARY WATER STRESS CORROSION CRACKING GROWTH RATES BY USING THE EXTENDED FINITE ELEMENT METHOD

  • LEE, SUNG-JUN;CHANG, YOON-SUK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.895-906
    • /
    • 2015
  • Background: Mitigation of primary water stress corrosion cracking (PWSCC) is a significant issue in the nuclear industry. Advanced nickel-based alloys with lower susceptibility have been adopted, although they do not seem to be entirely immune from PWSCC during normal operation. With regard to structural integrity assessments of the relevant components, an accurate evaluation of crack growth rate (CGR) is important. Methods: For the present study, the extended finite element method was adopted from among diverse meshless methods because of its advantages in arbitrary crack analysis. A user-subroutine based on the strain rate damage model was developed and incorporated into the crack growth evaluation. Results: The proposed method was verified by using the well-known Alloy 600 material with a reference CGR curve. The analyzed CGR curve of the alternative Alloy 690 material was then newly estimated by applying the proven method over a practical range of stress intensity factors. Conclusion: Reliable CGR curves were obtained without complex environmental facilities or a high degree of experimental effort. The proposed method may be used to assess the PWSCC resistance of nuclear components subjected to high residual stresses such as those resulting from dissimilar metal welding parts.

Stress Evaluation and Case Study of Reinforced Wall-thinned Class 2 and 3 Pipes in Operating Nuclear Power Plants Using Equivalent Stiffness Concept (등가 강성 개념을 이용한 가동 원전 2, 3등급 감육 보강 배관의 응력 평가 및 사례해석)

  • Xinyu Ma;Jae Yoon Kim;Jin Ha Hwang;Yun Jae Kim;Man Won Kim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.54-60
    • /
    • 2022
  • ASME BPVC provides stress evaluation rules for Class 2 and 3 nuclear piping. However, such rules are difficult to be applied to reinforced wall-thinned pipes during service. To resolve this issue, a new method for stress evaluation of reinforced wall-thinned pipes is proposed in this work, based on the equivalent stiffness concept. By converting a reinforced wall-thinned pipe to an equivalent straight pipe having the same stiffness, stress evaluation can be proceeded using the current ASME BPVC rules. The proposed method is applied to pipes with 4 different normal pipe size and the effects of reinforcement and wall-thinning dimensions on evaluated stresses are discussed.

Consideration for a Proper Stress Definition in Fatigue Analysis of Welded Structures

  • Kim, Myung-Hyun;Kang, Sung-Won
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.396-398
    • /
    • 2005
  • At present, fatigue design of welded structures is primarily based on nominal stress or hot spot stress approach with a series of classified weld S-N curves. However, these methods are known to possess drawbacks, such as difficulty associated with defining proper nominal stress and the finite element sue sensitivity etc. Recently, a mesh-size insensitive structural stress definition is proposed by Battelle that gives a stress state at weld toe with relatively large mesh size. The structural stress definition is based on the elementary structural mechanics theory and provides an effective measure of a stress state in front of weld toe. As an experimental validation of the structural stress method in obtaining the fatigue strength of weldments, a series of experiment is carried out for various sizes of weldments. Based on the result from this study, it is expected to develop a more precise fatigue strength evaluation technique and to save time period required in the fatigue design of ship and offshore structures.

  • PDF

A Study on the Evaluation of Thermal Stress of Massive Concrete Structure (매스콘크리트구조물의 온도응력평가에 관한 연구)

  • 강석화;정철헌;정한중;이용호;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.126-135
    • /
    • 1995
  • Thermal cracks are occured when thermal stress due to the hydration of cement exceeds the tens~le strength of concrete. Since crackmg causes poor durability of concrete, the effect of ther ma1 cracking should be includod for the design and construction of massive concrete structures. In this study, an experiment is performed for the investigation of time dependent thermal stress history. In order to evaluate thermal stress. two methods are employed. One 1s the evaluation method of thermal stress based on the measurement from embedment stram gauge with non-stress strain gauge and the other 1s based on the measurement from concrete stress gauge. As a result of this study, the value corrected by the former shows good agreement with the latter. The validity of the proposed method for the evaluation of thermal stress 1s explored.

Comparison of hot spot stress evaluation methods for welded structures

  • Seo, Jung-Kwan;Kim, Myung-Hyun;Shin, Sang-Beom;Han, Myung-Soo;Park, June-Soo;Mahendr, Mahen;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.200-210
    • /
    • 2010
  • In this paper, different evaluation methods of Hot Spot Stresses (HSS) have been applied to four different welded structure details in order to compare them and to illustrate their differences. The HSSs at failure-critical locations were calculated by means of a series of finite element analyses. There was good overall agreement between calculated and experimentally determined HSS on the critical locations. While different methods and procedures exist for the computation of the structural hot-spot stress at welded joints, the recommendations within the International Institute of Welding (IIW) guideline concerning the 'Hot Spot Stress' approach were found to give good reference stress approximations for fatigue-loaded welded joints. This paper recommends and suggests an appropriate finite element modeling and hot spot stress evaluation technique based on round-robin stress analyses and experimental results of several welded structure details.

Development of FEA Custom Application System for Thermal Stress Evaluation of Skirt Type Joint Pressure Vessel (압력용기 Skirt부의 열응력 평가를 위한 유한요소해석 전문가시스템 개발)

  • Ye, Gyoo-Hyeon;Park, Dong-Sung;Choi, Kyeong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2003
  • A custom application system, which was based on the finite element analysis, for stress on the head-skirt junction of a hot pressure vessel was developed. This is useful computer-based analysis system which designed to provide an analysis technique and knowledge conveniently available to other people. It was found the evaluation of thermal stress of several typed skirt joint of a pressure vessel could be performed early using this system.

  • PDF

Evaluation of the Crack Tip Stress Distribution Considering Constraint Effects in the Reactor Pressure Vessel (구속효과를 고려한 원자로 압력용기 균열선단에서의 응력분포 예측)

  • Kim, Jin-Su;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.756-763
    • /
    • 2001
  • In the process of integrity evaluation for nuclear power plant components, a series of fracture mechanics evaluation on surface cracks in reactor pressure vessel(RPV) must be conducted. These fracture mechanics evaluation are based on stress intensity factor, K. However, under pressurized thermal shock(PTS) conditions, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. Besides, the internal pressure during the normal operation produces high tensile stress at the RPV wall. As a result, cracks on inner surface of RPVs may experience elastic-plastic behavior which can be explained with J-integral. In such a case, however, J-integral may possibly lose its validity due to constraint effect. In this paper, in order to verify the suitability of J-integral, tow dimensional finite element analyses were applied for various surface cracks. A total of 18 crack geometries were analyzed, and $\Omega$ stresses were obtained by comparing resulting HRR stress distribution with corresponding actual stress distributions. In conclusion, HRR stress fields were found to overestimate the actual crack-tip stress field due to constraint effect.

The Evaluation of the Short-term Stress Effect on Cognitive Rehabilitation Training Assessment (인지 재활훈련 평가 시 단기 스트레스가 미치는 영향 연구)

  • Jang, Ik-Jae;Youn, Jong-In
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.197-202
    • /
    • 2014
  • The cognitive rehabilitation training is important for treating many cognitive impairment conditions, including Parkinson's disease, stroke, and ADHD. In this study, we developed a new evaluation system to improve the measurement of the conventional evaluation systems for cognitive rehabilitation training. The developed system measured the activity of dopamine(DA) and an autonomic nervous system(ANS) with photoplethysmography and electromyography. The results demonstrated that the cognitive capacity was increased but the activity of DA was decreased with unbalanced ANS by short-term stress. Based on the results, the effect of short-term stress should be recognized for the cognitive rehabilitation training.