• Title/Summary/Keyword: Stress/Strain Effect

Search Result 1,402, Processing Time 0.023 seconds

Investigation of Plane Strain Fatigue Crack Growth Behavior by Using Side-Grooved Specimens (측면홈 시험편을 이용한 평면 변형률 피로 균열 진전에 관한 연구)

  • 김종한;송지호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.63-69
    • /
    • 1992
  • Plane-strain fatigue crack growth behavior of 7075-76 aluminium alloy was investigated by using side-grooved through-thickness center cracked tension(CCT) specimens. The effect of side-groove on the stress intensity factor value was examined. The effective thickness expression of $B_{e}$= $B_{o}$-( $B_{o}$-( $B_{ o-B_{n}^{2}}$ $B_{o}$ is the most appropriate to evaluate the stress intensity factor of side-grooved CCT specimen for fatigue testing. Fatigue crack growth rates can be well described by the effective stress intensity factor range based on closure measurements, for both side-grooved and uniform thickness specimens. Provided that the thickness of specimen meets the requirements for valid plane-strain fracture toughness, uniform thickness specimen data may be assumed to approximately represent the plane strain through-thickness crack growth behavior.ehavior.r.

Dynamic stress, strain and deflection analysis of pipes conveying nanofluid buried in the soil medium considering damping effects subjected to earthquake load

  • Abadi, M. Heydari Nosrat;Darvishi, H. Hassanpour;Nouri, A.R. Zamani
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.445-452
    • /
    • 2019
  • In this paper, dynamic stress, strain and deflection analysis of concrete pipes conveying nanoparticles-water under the seismic load are studied. The pipe is buried in the soil which is modeled by spring and damper elements. The Navier-Stokes equation is used for obtaining the force induced by the fluid and the mixture rule is utilized for considering the effect of nanoparticles. Based on refined two variables shear deformation theory of shells, the pipe is simulated and the equations of motion are derived based on energy method. The Galerkin and Newmark methods are utilized for calculating the dynamic stress, strain and deflection of the concrete pipe. The influences of internal fluid, nanoparticles volume percent, soil medium and damping of it as well as length to diameter ratio of the pipe are shown on the dynamic stress, strain and displacement of the pipe. The results show that with enhancing the nanoparticles volume percent, the dynamic stress, strain and deflection decrease.

Proposal of Stress-Strain Relations Considering Confined Effects for Various Composite Columns (합성형태에 따른 콘크리트 구속효과를 고려한 응력-변형률 관계식의 제안)

  • Park, Kuk Dong;Hwang, Won Sub;Yoon, Hee Taek;Sun, Woo Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.265-275
    • /
    • 2010
  • Concrete filled steel tube and concrete encased steel tube columns are expected to have confined effects of concrete by steel and reinforced effects of local buckling by concrete. On the basis of confined state concrete models of previous researches, stress-strain and load-displacement relations of RC, CFT and CET columns are analyzed by steel ratio. After comparing analysis results with experimental results, Modified stress-strain relations are derived through evaluation the influence upon confined effects of concrete in each cases. Also, the modified stress-strain models are carried out to be compared with specified strength of various countries.

An Indentation Theory Based on FEA Solutions for Property Evaluation (유한요소해에 기초한 물성평가 압입이론)

  • Lee, Hyeong-Il;Lee, Jin-Haeng
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1685-1696
    • /
    • 2001
  • A novel indentation theory is proposed by examining the data from the incremental plasticity theory based finite element analyses. First the optimal data acquisition location is selected, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five. Numerical regressions of obtained data exhibit that strain hardening exponent and yield strain are the two main parameters which govern the subindenter deformation characteristics. The new indentation theory successfully provides the stress-strain curve with an average error less than 5%.

A Novel Indentation Theory Based on Incremental Plasticity Theory (증분소성이론에 준한 새 압입이론)

  • Lee, Hyung-Yil;Lee, Jin-Haeng
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.185-192
    • /
    • 2000
  • A novel indentation theory is proposed by examining the data from the incremental plasticity theory based finite element analyses. First the optimal data acquisition location is selected, where the strain gradient is the least and the effect of friction is negligible. This data acquisition point increases the strain range by a factor of five. Numerical regressions of obtained data exhibit that strain hardening exponent and yield strain are the two main parameters which govern the subindenter deformation characteristics. The new indentation theory successfully provides the stress-strain curve with an average error less than 3%.

  • PDF

Precipitation and Recrystallization of V-Microalloyed Steel during Hot Deformation (V 첨가강의 고온변형시 석출 및 재결정에 관한 연구)

  • 조상현;김성일;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.48-54
    • /
    • 1996
  • The continuous deformation , multistage deformation and stress relaxation were carried out to investigate the strain induced procipitation by torsion tests in the range of 1000∼800$^{\circ}C$, 0.05/sec∼5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests and the distribution of percipitates increased at higher strain rate and the mean size of precipitates was found to be about 50nm. The precipitation starting time decreased with increasing strain rate from 0.05/sec to 5 /sec and pre-strain. The effect of deformation conditions on the no-recrystallization temperature(Tnr) was determined in the multistage deformation with declining temerature. The Tnr decreased with increasing strain and strain rae. In the controlled rolling, grain refinement and precpitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

Controlled Deformation of Microalloyed Steel by Precipitation and Recrystallization (미량원소첨가강의 석출 및 재결정에 의한 제어변형)

  • 조상현;김성일;유연철
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.102-109
    • /
    • 1997
  • The multistage deformation and stress relaxation were carried out to investigate the strain induced precipitation by torsion tests in the range of 1000~80$0^{\circ}C$, 0.05~5/sec for V-microalloyed steel. The starting temperature and time for the initiation of precipitation were determined by stress relaxation tests. The distribution of precipitates increased, as the strain rate increased and the mean size of precipitates was found to be about 10~30nm. The precipitation starting time$(P_s)$ decreased with increasing strain rate and the amount of pre-strain. The effect of deformation conditions on the no-recrystallization temperature$(T_nr)$ was also determined in the multistage deformation. $T_nr$ Tnr decreased with increasing the strain and strain rate. In the controlled rolling simulation, grain refinement and precipitation hardening effects could be achieved by the alternative large pass strain at the latter half pass stage under the condition of low temperature and high strain rate.

  • PDF

A Study on the Finite Element Analysis of Tire under Rolling and Loading Conditions (회전 및 하중을 받는 타이어의 응력해석에 관한 연구)

  • Hwang, Joon;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.3
    • /
    • pp.101-109
    • /
    • 1995
  • Axisymmetric and quasi-static finite element analysis of an inflated tire rotating with constant angular velocity and contact to road has been performed. Centrifugal force effect was added to load stiffness matrix and equation of effective material properties were calculated by the Halpin-Tsai formulation. In this report, radial truck/bus tire was analyzed. It was inflated and rotated at speeds up to 140 km/h. Then, contact problem was performed to calculate stress-strain field of tire wiht flat rigid road under the load due to the self-weight of a vehicle. Significant changes of stress-strain field of tire were observed in the finite element analysis. Shear stress, strain and strain energy density were rapidly increased at the dege of #2 belt at freely rotating state. This concentrated stress and strain made belt edge sparation. Under the condition of flat riged road contact, strain energy density of #2 belt, carcass turn-up part were concentrated and bigger values than only freely rotation state. Therefore, dynamic behaivor of tire has to considered as design factors which are affected to belt edge separation and bead breakage.

  • PDF

Effect of Initial Defects on Welding Deformation and Residual Stress (강판의 초기不整이 용접변형.잔류응력에 미치는 영향)

  • 박정응
    • Journal of Welding and Joining
    • /
    • v.17 no.4
    • /
    • pp.76-84
    • /
    • 1999
  • The residual stress generated when the steel plates were produced, did not influence on the out-of-plane deformation and residual stress generated by welding. When the initial deflection shape was a concave(Type I), the out-of-plane deformation became the same shape as that of the initial deflection and its magnitude became small. When the initial deflection made a winding in the welding direction(Type III), the out-of-plane deformation became large in the plate width. The initial deflection shape did not influence on residual stress and plastic strain produced by welding.

  • PDF

The Static Overload Effect Estimations on Fatigue Strength by The Measurement of Local Strain Variation at The Weldment Toe (용접 토우부의 국부적 변형률 측정을 통한 용접부의 정적 과하중에 따른 피로강도의 변화 평가)

  • Lee, Hyun-Woo;Kim, Ju-Hwan;Kim, Hyun-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.59-66
    • /
    • 2001
  • Fatigue strength of the welding structure is governed by the residual stress at the weldment toe and static tensile overloads were known as relieving the residual stresses. In this study, static tensile overloads were applied to the welding structures which caused the relief of residual stresses. The amount of residual stress relief was found as proportional to the change of fatigue limit at the given conditions. Based on the fact of the proportionality between the change of fatigue limit and that of residual stress, simple measurement technique is proposed. Modified stress-life curves base on proposed technique gave good agreement with test results.

  • PDF