• Title/Summary/Keyword: Streptomyces hygroscopicus

Search Result 25, Processing Time 0.027 seconds

Isolation and Structural Determination of Antifungal Antibiotic from Streptomyces hygroscopicus MJM1004 (Streptomyces hygroscopicus MJM1004가 생산하는 항진균성 항생 물질의 분리 및 구조 결정)

  • Bae, Ju-Yun;Kwon, Hyong-Jin;Suh, Joo-Won
    • Applied Biological Chemistry
    • /
    • v.42 no.4
    • /
    • pp.271-276
    • /
    • 1999
  • Several Streptomyces strains were tested for potent antifungal agents active against phytopathogenic fungi. Among the tested, S. hygroscopicus MJM1004 showed a potent antifungal activity when assayed using Candida albicans as indicator organism. With the strain of MJM1004, fermentation medium for the production of an antifungal agent was developed with varying carbon sources, nitrogen sources, and mineral elements, which resulted in the highest productivity in the medium containing 2% soybean meal, 1% glucose, 2% starch, 0.3% $CaCO_3$, 0.05% $MgSO_4{\cdot}7H_2O$, 0.05% $K_2HPO_4$. The active compound showed a broad spectrum of antifungal activity against several plant pathogenic fungi. The antifungal compound was purified and showed the physicochemical characteristics similar to azalomycin F complex in NMR and MS analysis.

  • PDF

Production of Rapamycin in Streptomyces hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology

  • Kim, Yong Hyun;Park, Bu Soo;Bhatia, Shashi Kant;Seo, Hyung-Min;Jeon, Jong-Min;Kim, Hyun-Joong;Yi, Da-Hye;Lee, Ju-Hee;Choi, Kwon-Young;Park, Hyung-Yeon;Kim, Yun-Gon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1319-1326
    • /
    • 2014
  • Rapamycin, produced by the soil bacterium Streptomyces hygroscopicus, has the ability to suppress the immune system and is used as an antifungal, anti-inflammatory, antitumor, and immunosuppressive agent. In an attempt to increase the productivity of rapamycin, mutagenesis of wild-type Streptomyces hygroscopicus was performed using ultraviolet radiation, and the medium composition was optimized using glycerol (which is one of the cheapest starting substrates) by applying Plackett-Burman design and response surface methodology. Plackett-Burman design was used to analyze 14 medium constituents: M100 (maltodextrin), glycerol, soybean meal, soytone, yeast extract, $(NH_4)_2SO_4$, $\small{L}$-lysine, $KH_2PO_4$, $K_2HPO_4$, NaCl, $FeSO_4{cdot}7H_2O$, $CaCO_3$, 2-(N-morpholino) ethanesulfonic acid, and the initial pH level. Glycerol, soytone, yeast extract, and $CaCO_3$ were analyzed to evaluate their effect on rapamycin production. The individual and interaction effects of the four selected variables were determined by Box-Behnken design, suggesting $CaCO_3$, soytone, and yeast extract have negative effects, but glycerol was a positive factor to determine rapamycin productivity. Medium optimization using statistical design resulted in a 45% ($220.7{\pm}5.7mg/l$) increase in rapamycin production for the Streptomyces hygroscopicus mutant, compared with the unoptimized production medium ($151.9{\pm}22.6mg/l$), and nearly 588% compared with wild-type Streptomyces hygroscopicus ($37.5{\pm}2.8mg/l$). The change in pH showed that $CaCO_3$ is a critical and negative factor for rapamycin production.

Strain Improvement by Interspecific Protoplast Fusion of Streptomyces griseus and Streptomyces hygroscopicus producing Acetaminophen (이종간 원형질체 융합을 이용한 acetaminophen 생산균주 개량)

  • Sohn, Yeo-Won;Jung, Dae-Young;Lee, Sang-Sup;Min, Hong-Ki
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.595-601
    • /
    • 1994
  • Acetaminophen, a widely used analgesic, can be formed by N-acetylation and p-hydroxylation of aniline. Interspecific protoplast fusion technique was used to get acetaminophen directly from aniline and to increase the productivity of acetaminophen. Three auxotrophic mutants were obtained from S. griseus(ATCC 13273) and S. hygroscopicus(KCTC 1089) by N-methyl-N'-nitro-N-nitrosoguanidine(NTG) treatment. Regeneration frequencies of S. griseus$(his^-)$, S. griseus$(lys^-)$, S. hygroscopicus$(arg^-)$ were 42%, 45%, and 31%, respectively. Fusion of protoplasts carrying different auxotrophic markers was achieved by treatment with polyethylene glycol. When protoplasts were treated with 50% polyethylene glycol for 3 minutes, the fusion frequency between S. griseus$(his^-)$ and S. hygroscopicus$(arg^-)$ was $3.8{\times}10^{-5}$. The fusion frequency between S. griseus$(lys^-)$ and S. hygroscopicus$(arg^-)$ was $5.6{\times}10^{-4}$. When we checked the production of acetaminophen, thirty-four out of the fifty-six fusants produced larger amounts of acetaminophen than the parent strains did. Nine fusants produced twice more and twenty-five fusants produced one to two times more of acetaminophen than their parents.

  • PDF

Thiazinogeldanamycin, a New Geldanamycin Derivative Produced by Streptomyces hygroscopicus 17997

  • Ni, Siyang;Wu, Linzhuan;Wang, Hongyuan;Gan, Maoluo;Wang, Yucheng;He, Weiqing;Wang, Yiguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.599-603
    • /
    • 2011
  • A new geldanamycin (GDM) derivative was discovered and isolated from the fermentation broth of Streptomyces hygroscopicus 17997. Its chemical structure was elucidated as thiazinogeldanamycin by LC-MS, sulfur analysis, and NMR. The addition of cysteine to the fermentation medium significantly stimulated the production level of thiazinogeldanamycin, suggesting cysteine as a precursor of thiazinogeldanamycin production. Although showing a decreased cytotoxicity against HepG2 cancer cells, thiazinogeldanamycin exhibited an improved water solubility and photostability. Thiazinogeldanamycin may represent the first natural GDM derivative characterized so far that uses GDM as its precursor. Its appearance also clearly indicates that an appropriate end-point of fermentation is of critical importance for the maximal production of GDM by Streptomyces hygroscopicus 17997.

Nutritional Studies on the Growth of the Rapamycin-Producing Streptomyces hygroscopicus

  • Kim, Wan-Seop;Davis, Sean;Wong, Grace;Demain, Arnold-L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.560-563
    • /
    • 2003
  • During our previous studies on the relationship between nutrient requirements of S. hygroscopicus C9 and rapamycin biosynthesis, we developed chemically-defined media containing among other nutrients, aspartic acid, arginine, histidine, or ammonium sulfate. However, these media (“Cheng et al. medium” and “Lee et al. medium”) showed very slow growth characterized by a very long lag phase of growth. In an attempt to develop a chemically-defined or semi-defined medium to support more rapid growth and increased cell production, we have carried out studies to shorten the lag phase. Of the various additives tested, vitamin-free casein acid hydrolysate was the most significant by shortening the lag phase by 2-3 days. Mixtures of amino acids failed to replace casein acid hydrolysate. The active principle passed through an ultrafilter with a molecular weight cutoff of 1,000 and thus may be a peptide. The present work has yielded a semi-defined medium which should be useful for further growth studies on S. hygroscopicus C9.

Identification of Three Positive Regulators in the Geldanamycin PKS Gene Cluster of Streptomyces hygroscopicus JCM4427

  • Kim, Won-Cheol;Lee, Jung-Joon;Paik, Sang-Gi;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1484-1490
    • /
    • 2010
  • In the Streptomyces hygroscopicus JCM4427 geldanamycin biosynthetic gene cluster, five putative regulatory genes were identified by protein homology searching. Among those genes, gel14, gel17, and gel19 are located downstream of polyketide synthase genes. Gel14 and Gel17 are members of the LAL family of transcriptional regulators, including an ATP/GTP-binding domain at the N-terminus and a DNA-binding helix-turn-helix domain at the C-terminus. Gel19 is a member of the TetR family of transcriptional regulators, which generally act to repress transcription. To verify the biological significance of the putative regulators in geldanamycin production, they were individually characterized by gene disruption, genetic complementation, and transcriptional analyses. All three genes were confirmed as positive regulators of geldanamycin production. Specifically, Gel17 and Gel19 are required for gel14 as well as gelA gene expression.

Heterologous Expression of a Putative $K^+/H^+$ Antiporter of S. coelicolor A3(2) Enhances $K^+$, Acidic-pH Shock Tolerances, and Geldanamycin Secretion

  • Song, Jae Yang;Seo, Young Bin;Hong, Soon-Kwang;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.149-155
    • /
    • 2013
  • Heterologous expression of a putative $K^+/H^+$ antiporter of Streptomyces coelicolor A3(2) (designated as sha4) in E. coli and Streptomyces hygroscopicus JCM4427 showed enhanced tolerance to $K^+$ stress, acidic-pH shock, and/or geldanamycin production under $K^+$ stress. In a series of $K^+$ extrusion experiments with sha4-carrying E. coli deficient in the $K^+/H^+$ antiporter, a restoration of impaired $K^+$ extrusion activity was observed. Based on this, it was concluded that sha4 was a true $K^+/H^+$ antiporter. In different sets of experiments, the sha4-carrying E. coli showed significantly improved tolerances to $K^+$ stresses and acidic-pH shock, whereas sha4-carrying S. hygroscopicus showed an improvement in $K^+$ stress tolerance only. The sha4-carrying S. hygroscopicus showed much higher geldanamycin productivity than the control under $K^+$ stress condition. In another set of experiments with a production medium, the secretion of geldanamycin was also significantly enhanced by the expression of sha4.

New Geldanamycin Analogs from Streptomyces hygroscopicus

  • Wu, Cheng-Zhu;Jang, Jae-Hyuk;Ahn, Jong Seog;Hong, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1478-1481
    • /
    • 2012
  • Geldanamycin (GM) and its analogs are important anticancer agents that inhibit heat shock protein (Hsp) 90, which is a major chaperone protein in cancer cells. Accordingly, based on interest in obtaining novel natural GM derivatives, the potential of Streptomyces hygroscopicus JCM4427, a GM producer, was explored for novel natural GM derivative(s), resulting in the discovery of new GM analogs as a biosynthetic shunt product and intermediates from its fermentation broth. In this study, the fermentation, isolation, structure determination, and biological activity of the compounds, two new tetracyclic thiazinogeldanamycin (1) and 19-hydroxy-4,5-dihydrogeldanamycin (3), together with the three known 4,5-dihydrothiazinogeldanamycin (2), reblastatin (4), and 17-demethoxy-reblastatin (5), are described.

Characterization of D-Glucose ${\alpha}$-1-Phosphate Uridylyltransferase (VldB) and Glucokinase (VIdC) Involved in Validamycin Biosynthesis of Streptomyces hygroscopicus var. limoneus KCCM 11405

  • Seo Myung-Ji;Im Eun-Mi;Singh Deepak;Rajkarnikar Arishma;Kwon Hyung-Jin;Hyun Chang-Gu;Suh Joo-Won;Pyun Yu-Ryang;Kim Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1311-1315
    • /
    • 2006
  • Aminocyclitol antibiotic validamycin A, a prime control agent for sheath blight disease of rice plants, is biosynthesized by Streptomyces hygroscopicus var. limoneus. Within the validamycin biosynthetic gene cluster, vldBC forms an operon of vldABC with vidA, the gene encoding 2-epi-5-epi-valiolone synthase. Biochemical studies, employing the recombinant proteins from Escherichia coli, established VldB and VldC as D-glucose $\alpha$-1-phosphate uridylyltransferase and glucokinase, respectively. This finding substantiates that the validamycin biosynthetic gene cluster harbors genes encoding the enzymes for UDP-glucose formation from glucose. Therefore, we propose that validamycin biosynthesis employs its own catalysts to generate UDP-glucose, but not depending on the primary metabolism.

Enhancement of Geldanamycin Production by pH Shock in Batch Culture of Streptomyces hygroscopicus subsp. duamyceticus

  • Song, Jae-Yang;Kim, Yoon-Jung;Hong, Young-Soo;Chang, Yong-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.897-900
    • /
    • 2008
  • Various sequences of pH change were applied in a batch bioreactor to investigate pH shock effects on geldanamycin production by Streptomyces hygroscopicus subsp. duamyceticus JCM4427. In the control culture where the pH was not controlled, the maximum geldanamycin concentration was 414 mg/l. With the pHS1 mode of pH shock, that is, an abrupt pH change from pH 6.5 to pH 5.0 and then being maintained at around pH 5.0 afterward, 768 mg/l of geldanamycin was produced. With pHS2, in which the pH was changed sequentially from pH 6.7 to pH 5.0 and then back to pH 6.0, 429 mg/l of geldanamycin was produced. With pHS3 having a sequential pH change from pH 6.0 to pH 4.0 and then back to pH 6.5 followed by the third pH shock to pH 5.5, no geldanamycin production was observed. Considering that the productivity with pHS1 was about two-fold of that of the control culture with no pH control, we concluded that a more sophisticated manipulation of pH would further promote geldanamycin production.