• Title/Summary/Keyword: Strengthening shear

Search Result 375, Processing Time 0.023 seconds

Structural performance by strengthening types of wood frames using H shaped steel joints (H형강 접합부를 갖는 목조 골조의 보강형식에 따른 구조성능)

  • Kim, Soon-Chul;Moon, Youn-Joon;Yang, Il-Seung;Park, Geun-Hong
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.77-83
    • /
    • 2008
  • The effective mixture of structural laminated timber and other materials is expected to extend the potentials of building structures because of the potentials to realize high performance in structural safety. The classical joint types using drift pin and bolts are occurred local failures due to the small bearing area. In result, new joints using H shaped steel were suggested in this research. The objective of this study is to evaluate elasto-plastic behaviors by strengthening types of wood frames with new joints connecting structural laminated timber with H shaped steel. A total of five specimens of about one-second scale were tested. Specimens had columns with 1,050 height and $84mm{\times}100mm$ section, and a beams with 1,950mm length and $130mm{\times}100mm$ section. Also, the specimens were stiffened by brace, hwang-toh brick, and autoclaved lightweight concrete. The results of the test showed that the specimen stiffened with autoclaved lightweight concrete was characterized by fairly good strength and stiffness than those of the other specimens. Initial stiffness of H-2.0D-NS specimen with 2 times inserting length of beam height showed 1.33 times than that of H-1.5D-NS specimen. However, the strength of H-2.0D-NS specimen has not improved too much than H-1.5D-NS specimen.

Evaluation of Seismic Response of Masonry Walls Strengthened with Steel-bar Truss Systems by Non-linear Finite Element Analysis (비선형 유한요소 해석에 의한 강봉 트러스 시스템으로 보강된 조적벽체의 내진거동 평가)

  • Hwang, Seung-Hyeon;Yang, Keun-Hyeok;Kim, Sang-Hee;Lim, Jin-Sun;Im, Chae-Rim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.4
    • /
    • pp.20-27
    • /
    • 2021
  • The present study presents a nonlinear finite element analysis (FEA) approach using the general program of Abaqus to evaluate the seismic response of unreinforced masonry walls strengthened with the steel bar truss system developed in the previous investigation. For finite element models of masonry walls, the concrete damaged plasticity (CDP) and meso-scale methods were considered on the basis of the stress-strain relationships under compression and tension and shear friction-slip relationship of masonry prisms proposed by Yang et al. in order to formulate the interface characteristics between brick elements and mortars. The predictions obtained from the FEA approach were compared with test results under different design parameters; as a result, a good agreement could be observed with respect to the crack propagation, failure mode, rocking strength, peak strength, and lateral load-displacement relationship of masonry walls. Thus, it can be stated that the proposed FEA approach shows a good potential for designing the seismic strengthening of masonry walls.

Change of Compressive Deformation Behaviors of Ti-5Mo-xFe Metastable Beta Alloy According to Fe Contents (Fe 함량에 따른 Ti-5Mo-xFe 준안정 베타 합금의 압축 변형거동 변화)

  • Yong-Jae Lee;Jae Gwan Lee;Dong-Geun Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.303-310
    • /
    • 2023
  • β titanium alloys are widely used in aerospace industry due to their excellent specific strength and corrosion resistance. In particular, mechanical properties of metastable β titanium can efficiently be controlled by various deformation mechanisms such as slip, twinning, and SIM (Stress-Induced Martensite Transformation), making it an ideal material for many industrial applications. In this study, Ti-5Mo-xFe (x=1, 2, 4 wt%) alloy was designed by adding a relatively inexpensive β element to ensure price competitiveness. Additionally, microstructural analysis was conducted using OM, SEM, and XRD, while mechanical properties were evaluated through hardness and compression tests to consider the deformation mechanisms based on the Fe content. SIMT occurred in all three alloys and was influenced by the presence of βm (metastable beta) and beta stability. As the Fe content decreased, the α'' phase increased due to SIMT occurring within the βm phase, resulting in softening. Conversely, as the Fe content increased, the strength of the alloy increased due to a reduction in α'' formation and the contributions of solid solution strengthening and grain strengthening. Moreover, unlike the other alloys, shear bands were observed only in the fracture of the Ti-5Mo-4Fe alloy, which was attributed to differences in texture and microstructure.

A Study on Structural Performance Evaluation of RC Beams Strengthened with CFRP Plate (탄소섬유판으로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.212-217
    • /
    • 2004
  • Carbon fiber reinforced plastic(CFRP) plate Is one of the alterative materials for soengthening of reinforced and prestressed connote members due to excellent strength and light weight In this paper, the behavior of beams strengthened with CFRP plate and CFS(Carbon fiber sheet) is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear lone appear in same position. The main failure mode is a peeling-off of the CFRP plate near the loading points due to flexural-shear crack, Because of this failure mode, failure load is not linearly proportional to the thickness of CFRP plates. When beam is wrapped with CFS around oかy loading point it does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When line moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened beam and moment of unstrengthened beam is proposed 1.5-2.0. In order to use the plate of thicker than 6mm, CFS may be extended to the location which moment of strengthened beam is 1.5 times than moment of unstrengthened beam.

Flexural-Shear Behavior of Beam Members according to the Spacing of Stirrups and Tension Steel Ratio (스터럽간격과 인장철근비에 따른 고강도 콘크리트 보의 파괴거동)

  • Park, Hoon-Gyu;An, Young-Ki;Jang, Il-Young;Choi, Goh-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.513-521
    • /
    • 2003
  • Existing tests results have shown that confining the concrete compression region with closed stirrups improves the ductility and load-carrying capacity of beams. However, only few researchers have attempted to utilize the beneficial effects of the presence of these stirrups in design. This paper presents the result of experimental studies on the load-deflection behavior and the strengthening effect of laterally confined structural high-strength concrete beam members in which confinement stirrups have been introduced into the compression regions. Fifteen tests were conducted on full-scale beam specimens having concrete compressive strength of 41 MPa and 61 MPa. Different spacing of stirrups(0.25∼1.0d) and amount of tension steel($0.55{\sim}0.7{\rho}_b$) as major variables were investigated. And also, this study present an appropriate shear equation for decision of ultimate failure modes of high-strength concrete beams according to stirrup spacing. The equation is based on interaction between shear strength and displacement ductility. Prediction of failure mode from presented method and comparison with test results are also presenteded

An Experimental Study on Flexural Behavior of RC Beams Strengthened with Hi-Strength Bars(2) (고장력 인장봉으로 보강된 RC보의 휨거동에 관한 실험적 연구(2))

  • Shin, Kyung-Jae;Kwak, Myong-Keun;Bae, Kyu-Woong;Oh, Young-Suk;Moon, Jung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.603-610
    • /
    • 2006
  • The external unbonded strengthening offers advantages in speed and simplicity of installation over other strengthening techniques. Unlike externally bonded steel plate or carbon fiber sheet, surface preparation of the concrete for installation of high-tension bar is not required and installation is not affected by environmental conditions. Anchoring pin or anchoring plate are installed at the end of beam to connect the high-tension bar to concrete beam. The deviator are used in order that supplementary external bars would follow the curvature of the tested beam. A set often laboratory tests on reinforced concrete beam strengthened using the technique are reported. The main test parameters are the section area of strengthening bar, the depth of deviator and the number of deviators. The paper provides a general description of structural behavior of beams strengthened using the technique. The test result of strengthened beam are compared with those from a reference specimen. It is shown that the reinforcing technique can provide greater strength enhancements to unstrengthened beam and that the provision of deviator enhances efficiency. The ultimate moment of specimen with two deviators was higher than that of specimens with one deviator. It is also shown that the external bars enhance strength of beams in shear.

Flexural Performance of Slabs Strengthened by Fiber-Reinforced Polymer Sheet with Hydrophilic Epoxy (친수성 에폭시를 사용하여 FRP 시트로 보강된 슬래브의 휨거동 평가)

  • Ju, Hyunjin;Han, Sun-Jin;Cho, Hae-Chang;Lee, Deuck Hang;Kim, Kang Su
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.85-94
    • /
    • 2016
  • In this study, the hydrophilic chemical grout using silanol (HCGS) was introduced to overcome the limitations of conventional epoxy resin which have been used for strengthening reinforced concrete (RC) structures. Then, flexural tests on the RC slabs strengthened by FRP sheets were conducted. Three slab specimens were tested in this study; a control specimen with no strengthening, and two specimens strengthened by a typical epoxy resin or HCGS, respectively, as a binder between the slabs and the FRP sheets. In addition, an analytical model was developed to evaluate the flexural behavior of strengthened slab members, considering the horizontal shear force at the interface between concrete slabs and FRP sheets. The analysis results obtained from the proposed model indicated that the strengthened specimens showed fully composite behavior before their flexural failure. Especially, the specimen strengthened by HCGS, which can overcome the limitations of conventional epoxy resin, showed a similar flexural performance with that strengthened by a conventional epoxy resin.

Bond Behavior between Near-Surface-Mounted Fiber Reinforced Polymer Plates and Concrete in Structural Strengthening (표면매입보강방법으로 콘크리트내에 매입된 FRP판과 콘크리트 사이의 부착거동)

  • Seo, Soo-Yeon;Yoon, Seoung-Jo;Kwon, Yeong-Soon;Choi, Ki-Bong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.675-682
    • /
    • 2011
  • Recently, in retrofit of RC structures using FRP (Fiber Reinforced Polymer), researches about Near-Surface-Mounted Rertofit (NSMR) method have been widely performed. In NSMR, FRP bar is normally inserted in the slit formed in the cover concrete and then bonded by using epoxy mortar. In this paper, the bond characteristic of NSMR using FRP plate instead of bar was studied experimentally. Fracture behavior is observed from bond test using the parameters of embedment length, shear key, and FRP plate layer. In addition, an equation to predict the splitting strength of NSMR using FRP is proposed using the test result. The results showed that when the longer embedment length and more layers of FRP are used, the higher bond strength is achieved. There was a good co-relationship between the test and calculated results using the proposed equation.

A Case Study on Typhoon-Midlatitude Synoptic System Interaction: Typhoons Rusa(0215) and Maemi(0314) (태풍-중위도 종관 시스템 상호작용 연구: 루사(0215), 매미(0314) 사례분석)

  • Choi, Ki-Seon;Kim, Baek-Jo;Park, Jong-Kil
    • Journal of Environmental Science International
    • /
    • v.16 no.9
    • /
    • pp.1051-1061
    • /
    • 2007
  • The impact of midlatitude synoptic system (upper-level trough) on typhoon intensity change was investigated by analyzing the spatial and temporal characteristics of vertical wind shear (VWS), relative eddy momentum flux convergence (REFC), and potential vorticity (PV). These variables were computed over the radial mean $300{\sim}1,000km$ from the typhoon center by using GDAPS (Global Data Assimilation and Prediction System) data provided by the Korea Meteorological Administration (KMA). The selected cases in this study are typhoons Rusa (0215) and Maemi (0314), causing much damage in life and property in Korea. Results show that the threshold value of VWS indicating typhoon intensity change (typhoon to severe tropical storm) is approximately 15 m/s and of REFC ranges 6 to 6.5 $ms^{-1}day^{-1}$ in both cases, respectively. During the period with the intensity of typhoon class, PVs with 3 to 3.5 PVU are present in 360K surface-PV field in the cases. In addition, there is a time-lag of 24 hours between central pressure of typhoon and minimum value of VWS, meaning that the midlatitude upper-level trough interacts with the edge of typhoon with a horizontal distance less than 2,000 km between trough and typhoon. That is, strong midlatitude upper-level divergence above the edge of the typhoon provides a good condition for strengthening the vertical circulation associated with the typhoons. In particular, when the distance between typhoon and midlatitude upper-level trough is less than 1,000 km, the typhoons tend to weaken to STS (Severe Tropical Storm). It might be mentioned that midlatitude synoptic system affects the intensity change of typhoons Rusa (0215) and Maemi (0314) while they moves northward. Thus, these variables are useful for diagnosing the intensity change of typhoon approaching to the Korean peninsula.

Dislocation-oxide interaction in Y2O3 embedded Fe: A molecular dynamics simulation study

  • Azeem, M. Mustafa;Wang, Qingyu;Li, Zhongyu;Zhang, Yue
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.337-343
    • /
    • 2020
  • Oxide dispersed strengthened (ODS) steel is an important candidate for Gen-IV reactors. Oxide embedded in Fe can help to trap irradiation defects and enhances the strength of steel. It was observed in this study that the size of oxide has a profound impact on the depinning mechanism. For smaller sizes, the oxide acts as a void; thus, letting the dislocation bypass without any shear. On the other hand, oxides larger than 2 nm generate new dislocation segments around themselves. The depinning is similar to that of Orowan mechanism and the strengthening effect is likely to be greater for larger oxides. It was found that higher shear deformation rates produce more fine-tuned stress-strain curve. Both molecular dynamics (MD) simulations and BKS (Bacon-Knocks-Scattergood) model display similar characteristics whereby establishing an inverse relation between the depinning stress and the obstacle distance. It was found that (110)oxide || (111)Fe (oriented oxide) also had similar characteristics as that of (100)oxide || (111)Fe but resulted in an increased depinning stress thereby providing greater resistance to dislocation bypass. Our simulation results concluded that critical depinning stress depends significantly on the size and orientation of the oxide.