• 제목/요약/키워드: Strength reduction technique

검색결과 164건 처리시간 0.028초

강도 감소법에 의한 지하수위를 고려한 FEM 사면안정해석 (Slope Stability Analysis Considering Seepage Conditions by FEM Using Strength Reduction Technique)

  • 김영민
    • 한국지반공학회논문집
    • /
    • 제20권8호
    • /
    • pp.97-102
    • /
    • 2004
  • 본 논문은 기존의 한계 평형법 보다 사면의 파괴거동을 잘 묘사할 수 있는 유한요소법에 의한 사면의 안전율을 결정하는 방법에 대하여 기술하였다. 특히, 지하수위를 고려하는 사면의 파괴거동을 강도감소법에 의한 유한요소법으로 산정하였다. 그 결과, 강도 감소법을 이용한 FEM해석방법이 사면의 안정해석에 대하여 파괴거동과 안전율을 구하는데 유효한 수단임을 보여 주었다. 그리고 지하수 상승경우와 지하수 급강하 사면의 경우에 대하여 자세히 분석하였으며, 한계평형법인 Bishop간편법 해석결과와 비교, 검토하였다.

강도감소법을 이용한 산악터널 갱구부의 안전영역 평가 (An Assessment of Safety Zone for Mountain Tunnel Portal Using Strength Reduction Technique)

  • 홍창수;황대진;이강호;유광호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.925-930
    • /
    • 2006
  • During the excavation of a tunnel portal, failure zones around the tunnel heading occur and also the ground supports itself. In a portal, its location and the ground characteristic have a great influence on the stability of the tunnel. Therefore, the failure mechanism of a tunnel heading and how to assess the stability of the tunnel are very important. In this paper, the numerical analyses were executed to evaluate the safety factor using strength reduction technique. The influence area of an excavation was also predicted through a case study in which no-support case and support case with the Pattern P-6 were compared in terms of the ground class and the shear strain.

  • PDF

한계평형법과 개별요소법을 이용한 보은지역 암반사면 안전율 비교해석 (Comparison Analysis of Factor of Safety on Rock Slope in Boeun Region Using Limit Equilibrium Method and Distinct Element Method)

  • 이지수;유광호;박혁진;민경덕
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.643-650
    • /
    • 2002
  • The large planar failure has occurred in a rock cut slope of highway construction site in Boeun. This area is considered as unstable since the discontinuities whose orientations are similar to the orientation of the failure plane, are observed in many areas. Therefore, several analysis techniques such as SMR, stereographic analysis, limit equilibrium, numerical analysis, which are commonly used in rock slope stability analysis, are adopted in this area. In order to analyze the stress redistribution and nonlinear displacement caused by cut, which are not obtained in limit equilibrium method, the UDEC and shear strength reduction technique were used in this study Then the factors of safety evaluated by shear strength reduction technique and limit equilibrium were compared. In addition, the factor of safety under fully saturated slope condition was calculated and subsequently, the effect of the reinforcement was evaluated.

  • PDF

Green Wall 시스템의 설계 및 해석을 위한 기초연구 (A Basic Study for Design and Analysis of the Green Wall System)

  • 박시삼;김종민;김홍택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.681-688
    • /
    • 2005
  • The Green Wall is the highest eco-system among a segmental retaining wall systems. Recently, the demand of high segmental retaining wall (SRW) is increased in domestic. The soil nailing system is applied in order to maintain the high SRW stability for steeper slope. However, the proper design approach that can consider the earth pressure reduction effects in soil nailing system has not been proposed. Hence, the purpose of this study was to provide the design and analysis technique of the segmental retaining wall reinforced by soil nailing. Also, in this study, various parametric studies using numerical method as shear strength reduction (SSR) technique were carried out. In the parametric study, the length ratio and the bond ratio of the soil nailing were changed to identify the earth pressure reduction effect of the retaining wall reinforced by soil nailing.

  • PDF

탄소 섬유관으로 구속된 콘크리트 부재의 신뢰성 해석 (Reliability Analysis of Concrete Filled Carbon Composite Tube)

  • 김희철;이경훈;홍원기;이영학;엄철환
    • 한국지진공학회논문집
    • /
    • 제10권5호
    • /
    • pp.1-9
    • /
    • 2006
  • 본 논문에서는 탄소섬유관으로 구속된 무근 콘크리트 원형 및 각형 기둥에 대한 축하중 및 횡하중 재하 실험을 수행하고, 실험결과를 바탕으로 하여 몬테카를로 해석을 이용한 신뢰성 해석을 수행함으로써 탄소섬유관으로 구속된 무근 콘크리트 원형 및 각형 기둥과 탄소섬유관으로 구속된 철근 콘크리트 원형 및 각형 기둥의 두 가지 경우에 대한 강도저감계수를 예측하였다. 해석 결과, 무근의 경우에는 강도저감계수가 0.7로 예측되었고, 철근이 삽입된 경우에는 강도저감계수가 0.85로 예측 되었다. 이러한 계수값은 원형과 각형인 경우 모두 같은 계수값을 보여주었다.

억지말뚝-사면의 상호작용 효과 (Coupled Effect of Pile/Slope Systems)

  • 정상섬;유광호;이선근
    • 한국지반공학회논문집
    • /
    • 제19권5호
    • /
    • pp.163-173
    • /
    • 2003
  • 본 연구에서는 억지말뚝으로 보강된 사면에서 한계평형 해석법과 3차원 해석 결과를 비교 분석하였다. 특히, 유한차분법을 이용한 FLAC 3D를 바탕으로 하는 커플링 해석에 주안점을 두었으며, FLAC을 이용하여 전단강도감소기법에 따른 보강사면의 안전율을 계산하기 위해 FLAC의 내장언어인 FISH를 이용하여 작성하였다. 커플링 해석에서 억지말뚝에 의한 안정화된 사면을 해석하기 위해 말뚝의 거동과 사면안정을 동시에 고려하였다. 따라서 본 연구에서는 이 두 방법을 적용하여 일렬 억지말뚝이 사면선단, 중앙부, 정부에 위치할 경우에 있어서 각각의 활동 파괴면 및 안전율을 비교 분석하였으며 강도정수 감소법을 적용한 해석기법의 적용성과 타당성에 대한 분석을 수행하였다.

사면안정해석에 있어서의 유한요소법과 한계평형법의 비교 (Comparative study between Finite Element Method and Limit Equilibrium Method on Slope Stability Analysis)

  • 이동엽;유충식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.483-490
    • /
    • 2002
  • This paper presents the results of a comparative study between FEM and LEM on slope stability analysis. For validation, factors of safety were compared between FEM and LEM. The results from the two methods were in good agreement suggesting that the FEM with the shear strength reduction method can be effectively used on slope stability analyses. A series of analysis were then performed using the FEM for various constitutive laws, slope angles, flow rules, and the finite element discretizations. Among the findings, the finite element method in conjunction with the shear strength reduction method can provide reasonable results in terms of factor of safety. Also revealed is that the results of FEM can be significantly affected by the way in which the type of constitutive law and flow rule are selected.

  • PDF

High-Performing Adhesive Bonding Fastening Technique For Automotive Body Structures

  • Symietz, Detlef;Lutz, Andreas
    • 접착 및 계면
    • /
    • 제7권4호
    • /
    • pp.60-64
    • /
    • 2006
  • In modern vehicle construction the search for means of weight reduction, improving durability, increasing comfort and raising body stiffness are issues of priority to the design engineer. The intelligent usage of many materials such as high strength steel, light-alloys and plastics enables a significant vehicle weight reduction to be achieved. The classical joining techniques used in the automobile industry need to be newly-evaluated since they often do not present workable solutions for such mixed-material connections, for example aluminium/steel. Calculation/simulation methods have made progress as a key factor for broader and more cost-effective implementation of structural bonding. This will lead to reduction of spotwelds and accelerate the car development. A special focus of the paper is the use of high strength steel grades. It will be shown that adhesive bonding is a key tool for yielding the potential of advanced high strength steel for low gauging without compromising the stiffness. The latest status of adhesive development has been described. Improvements with physical strength and glass temperature as well as of process relevant properties are shown. Also the situation regarding occupational hygiene is treated, showing that by further spotweld point reduction the emission around the working area can be even lowered against the current praxis. High performing lightweight design cannot longer do without high performing crash durable adhesives.

  • PDF

Stability analysis of homogeneous slopes with benches

  • Zhao, Lianheng;Xia, Peng;Xie, Rongfu;Li, Liang;Zhang, Yingbin;Cheng, Xiao
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.517-533
    • /
    • 2017
  • In this paper, with a graphical approach, a series of stability charts for homogeneous slopes with benches are presented based on the upper bound limit analysis theory and strength reduction technique. The objective function of the slope safety factor $F_s$ is optimized by the nonlinear sequential quadratic programming, and a substantial number of examples are illustrated to use the stability charts for homogeneous slopes with benches driven by only the action of the soil weight. These charts can be applied to quick and accurate estimations of the stability status of homogeneous slopes with benches. Moreover, the failure modes and the formula for safety factor Fs of homogeneous slopes with benches are provided to illustrate the stability analysis of slopes with benches, which is validated by samples.

네일의 토압분담 효과를 고려한 Green Wall 시스템의 설계 (Design of the Green Wall System considering Distribution Effect of Earth Pressure by Soil Nail)

  • 박시삼;조성한;유찬호;김홍택;김용언
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1038-1045
    • /
    • 2006
  • The Green Wall is highest eco-system among a segmental retaining wall systems. Recently, the demand of high segmental retaining wall (SRW) is increased in domestic. The soil nailing system is applied in order to maintain the high SRW stability for steeper slope. However, the proper design approach that can consider the earth pressure reduction effects in soil nailing system has not been proposed. This study was performed to introduce the design case by 'Two-Body Translation mechanism' to be able to consider distribution of earth pressure in the soil nailing when designing the green wall using soil nailing system. Also, this study attempts to evaluate the earth pressure change when advanced soil nailing system is constructed using $FLAC^{2D}$ ver. 3.30 program and 'Two-Body Translation mechanism'. Also in this study, various parametric studies using numerical methods as shear strength reduction (SSR) technique and limit equilibrium technique were carried out. In the parametric study, the length ratio and the bond ratio of the soil nailing were changed to identify the earth pressure reduction effect of the retaining wall reinforced by soil nailing.

  • PDF