• 제목/요약/키워드: Strength degradation

검색결과 1,119건 처리시간 0.029초

Parallel computation for debonding process of externally FRP plated concrete

  • Xu, Tao;Zhang, Yongbin;Liang, Z.Z.;Tang, Chun-An;Zhao, Jian
    • Structural Engineering and Mechanics
    • /
    • 제38권6호
    • /
    • pp.803-823
    • /
    • 2011
  • In this paper, the three dimensional Parallel Realistic Failure Process Analysis ($RFPA^{3D}$-Parallel) code based on micromechanical model is employed to investigate the bonding behavior in FRP sheet bonded to concrete in single shear test. In the model, the heterogeneity of brittle disordered material at a meso-scale was taken into consideration in order to realistically demonstrate the mechanical characteristics of FRP-to-concrete. Modified Mohr-coulomb strength criterion with tension cut-off, where a stressed element can damage in shear or in tension, was adopted and a stiffness degradation approach was used to simulate the initiation, propagation and growth of microcracks in the model. In addition, a Master-Slave parallel operation control technique was adopted to implement the parallel computation of a large numerical model. Parallel computational results of debonding of FRP-concrete visually reproduce the spatial and temporal debonding failure progression of microcracks in FRP sheet bonded to concrete, which agrees well with the existing testing results in laboratory. The numerical approach in this study provides a useful tool for enhancing our understanding of cracking and debonding failure process and mechanism of FRP-concrete and our ability to predict mechanical performance and reliability of these FRP sheet bonded to concrete structures.

Effect of γ-Irradiation on the Physicochemical Properties of Zein Films

  • Lee, Sehee;Lee, Myoungsuk;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • 제8권4호
    • /
    • pp.343-348
    • /
    • 2003
  • To elucidate the effect of gamma-irradiation on the physicochemical properties of zein films, the molecular and mechanical properties of the films were examined after irradiation at various irradiation doses. Gamma-irradiation of zein solutions caused the disruption of the ordered structure of the zein molecules, as well as degradation, cross-linking, and aggregation of the polypeptide chains based on an SDS-PAGE study. Gamma-irradiation increased the solubility of zein and decreased the viscosity due to cleavage of the polypeptide chains. Protein solubility of the zein films in urea/2-mercaptoethanol also increased with increasing irradiation doses. Alterations of the zein molecules by irradiation decreased water vapor per-meability by 12% and increased the elongation of zein films. However, mean tensile strength of the zein films was decreased by gamma-irradiation treatment. Measurement of Hunter color values indicated that irradiation caused a destructive effect on yellow pigments, resulting in a significant decrease in Hunter b values. The microstructure as observed by scanning electron microscopy showed that irradiated zein film had a smoother and glossier surface than the non-irradiated films.

분말사출성형에 의한 WC-Co 계 milling insert 제조 (WC-Co Milling Inserts Manufactured by Powder Injection Molding)

  • 성환진
    • 한국분말재료학회지
    • /
    • 제6권1호
    • /
    • pp.88-95
    • /
    • 1999
  • The purpose of this study is to investigate the manufacturing feasibility of WC-Co milling inserts via Powder Injection Molding (PIM) process. WC-Co is used in a wide variety of cutting tools due to its high hardness, stiffness, compressive strength and wear resistance properties. WC-Co parts for a high stress application were conventionally produced by the press and sinter method, which were Iimited to 2 dimensional shapes. Manufacturing WC-Co parts for a high stress application by PIM implies that tool efficiency can be highly improved due to increased freedom is design. P30 grade WC powder (WC-Co-TiC-TaC system) was mixed with RIST-5B133 binder and injection molded into milling inserts (Taegu Tech. Model WCMX 06T 308). The mean grain size of the powder was about 0.8$\mu$m. Injection molded specimens were debound by solvent extraction and thermal degradation method at various conditions. The specimens were sintered at 140$0^{\circ}C$ for 1 hr in vacuum. Carbon content, weight loss, dimensional change, and macro defects of the specimen were carefully monitored at each stage of the PIM process. PIMed WC-Co milling inserts reached 100% full density after sinteing. Its mechanical properties and micro-structures were comparable with the press and sintered milling insert. Carbon content of the sintered WC-Co insert was mainly determained by the atmosphere of thermal debinding. By controlling powder loading and injection molding condition, dimensional accuracy could be obtained within 0.4%. We confirm that PIM can not only be an alternative manufacturing method for WC-Co parts economically but also provide a design freedom for more effieient cutting tools.

  • PDF

보강용 지오신세틱스의 가속 인장 크리프 시험방법 (Accelerated Tensile Creep Test Method of Geosynthetics for Soil Reinforcement)

  • 구현진;조항원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.196-203
    • /
    • 2008
  • Durability of geosynthetics for soil reinforcement is accounted for creep and creep rupture, installation damage and weathering, chemical and biological degradation. Among these, the long-term creep properties have been considered as the most important factors which are directly related to the failure of geosynthetic-reinforced soil(GRS). However, the creep test methods and strain limits are too various to compare the test results with each other. The most widely used test methods are conventional creep test, time-temperature superposition and stepped isothermal method as accelerated creep tests. Recently developed design guidelines recommend that creep-rupture curve be used to determine the creep reduction factor($RF_{CR}$) which is a conservative approach. In this study, the different creep test methods were compared and the creep reduction factors were estimated at different creep strain limits of 10% of total creep strain and creep rupture. In order to minimize the impact of creep strain to the GRS structures, the various creep reduction factors using different creep test methods should be investigated and then the most appropriated one should be selected for incorporating into the design.

  • PDF

취성기지 복합재료의 물성치에 미치는 계면분리의 영향 (Effect of Interfacial Debonding on the Material Properties of Brittle Matrix Composites)

  • 염영진;진민철
    • Composites Research
    • /
    • 제16권1호
    • /
    • pp.42-49
    • /
    • 2003
  • 취성기지 복합재료는 섬유와 기지 사이에 계면분리가 존재하는 경우가 있는데 이것은 복합재료의 강도와 강성저하의 원인이 된다. 계면분리와 섬유체적비가 복합재료의 기계적 물성치에 미치는 영향에 대만 유한요소해석을 수행하였다. 우선 몇 가지 가정하에 복합재료를 구성하는 섬유와 기지에 대하여 간단하게 모델링하고 이웃하는 대표체적요소의 경계를 따라 응력과 변위 연속조건을 부과하였다. 강성상수들을 역변환하여 복합재료의 유효물성치를 구하였다. 완전접착의 경우 수치해를 혼합물법칙에 의한 이론해와 비교한 결과 일치함을 알 수 있었고 계면분리가 큰 경우 섬유체적비가 증가하더라도 물성치가 감소함을 알 수 있었다.

A study on different failure criteria to predict damage in glass/polyester composite beams under low velocity impact

  • Aghaei, Manizheh;Forouzan, Mohammad R.;Nikforouz, Mehdi;Shahabi, Elham
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1291-1303
    • /
    • 2015
  • Damage caused by low velocity impact is so dangerous in composites because although in most cases it is not visible to the eye, it can greatly reduce the strength of the composite material. In this paper, damage development in U-section glass/polyester pultruded beams subjected to low velocity impact was considered. Different failure criteria such as Maximum stress, Maximum strain, Hou, Hashin and the combination of Maximum strain criteria for fiber failure and Hou criteria for matrix failure were programmed and implemented in ABAQUS software via a user subroutine VUMAT. A suitable degradation model was also considered for reducing material constants due to damage. Experimental tests, which performed to validate numerical results, showed that Hashin and Hou failure criteria have better accuracy in predicting force-time history than the other three criteria. However, maximum stress and Hashin failure criteria had the best prediction for damage area, in comparison with the other three criteria. Finally in order to compare numerical model with the experimental results in terms of extent of damage, bending test was performed after impact and the behavior of the beam was considered.

Seismic repair of captive-column damage with CFRPs in substandard RC frames

  • Tunaboyu, Onur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.1-13
    • /
    • 2017
  • The effectiveness of the repair scheme for the damaged captive-columns with CFRPs (Carbon Fiber Reinforced Polymer) was investigated in terms of response quantities such as strength, ductility, dissipated energy and stiffness degradation. Two 1/3 scale, one-story one-bay RC (Reinforced Concrete) frames were designed to represent the substandard RC buildings in Turkish building stock. The first one, which is the reference specimen, is the bare frame without infill wall. Partial infill wall with opening was constructed between the columns of the second frame and this caused captive column defect. Severe damage was observed with the concentration of shear cracks in the second specimen columns. Then, the damaged members were repaired by CFRP wrapping and retested. For the three test series, similar reversed cyclic lateral displacement under combined effect of axial load was applied to the top of the columns. Overall response of the bare frame was dominated by flexural cracks. Brittle type of shear failure in the column top ends was observed in the specimen with partial infill wall. It was observed that former capacity of damaged members of the second frame was recovered by the applied repair scheme. Moreover, ultimate displacement capacity of the damaged frame was improved considerably by CFRP wrapping.

Seismic behavior of steel tube reinforced concrete bridge columns

  • Tian, Tian;Qiu, Wen-liang;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • 제28권1호
    • /
    • pp.63-71
    • /
    • 2018
  • This paper reports an experimental study that was accomplished to assess the seismic behavior of steel tube reinforced concrete bridge columns (SBCs). The motivation of this study was to verify a supposition that the core steel tube may be terminated at a rational position in the column to minimize the material cost while maintaining the seismic behavior of this composite column. Four SBC specimens were tested under combined constant axial load and cyclic reversed lateral loads. The unique variable in the test matrix was the core steel tube embedment length, which ranged from 1/3 to 3/3 of the column effective height. It is observed that SBCs showed two distinctly different failure patterns, namely brittle shear failure and ductile flexural failure. Tests results indicate that the hysteretic responses of SBCs were susceptible to the core steel tube embedment length. With the increase of this structural parameter, the lateral strength of SBC was progressively improved; the deformability and ductility, however, exhibited a tendency of first increase and then decrease. It is also found that in addition to maintained the rate of stiffness degradation and cumulative energy dissipation basically unchanged, both the ductility and deformability of SBC were significantly improved when the core steel tube was terminated at the mid-height of the column, and these were the most unexpected benefits accompanied with material cost reduction.

Impact of CO2 Laser Pretreatment on the Thermal Endurance of Bragg Gratings

  • Gunawardena, Dinusha Serandi;Lai, Man-Hong;Lim, Kok-Sing;Ahmad, Harith
    • Journal of the Optical Society of Korea
    • /
    • 제20권5호
    • /
    • pp.575-578
    • /
    • 2016
  • The thermal endurance of fiber Bragg gratings (FBGs), written with the aid of 193-nm ArF excimer laser irradiation on H2-loaded Ge/B codoped silica fiber, and pretreated with a CO2 laser and a subsequent slow cooling process, is investigated. These treated gratings show relatively less degradation of grating strength during the thermal annealing procedure. The thermal decay characteristics of treated and untreated fiber, recorded over a time period of 9 hours, have been compared. The effect on the Bragg transmission depth (BTD) and the center-wavelength shift, as well as the growth of refractive-index change during the grating inscription process for both treated and untreated fiber, are analyzed.

전술데이터링크 네트워크에서의 노드 이탈 관리 기법 (A Node Management Scheme in Tactical Data Link Network)

  • 안광호;이주형;조준영;오혁준
    • 한국통신학회논문지
    • /
    • 제36권4B호
    • /
    • pp.386-390
    • /
    • 2011
  • 현대전은 플랫폼 기반의 전장(PCW: Platform Centric Warfare)에서 네트워크 기반의 전장(NCW: Network Centric Warfare)으로 변화하고 있다. 네트워크 기반의 전장으로 변화하면서 네트워크 운용 및 관리의 중요성이 높아지고 있다. 본 논문은 군사용 우선 네트워크에서의 노드 이탈 관리 기법을 제안한다. 군사용 무선 네트워크는 노드의 네트워크 가입, 탈퇴가 비교적 자유로운 특징을 갖는다. 이러한 특징은 네트워크 가용성을 저해하는 요인이 될 수 있다. 일반 노드의 네트워크 이탈 상황에서 발생하는 가용성 저해요인을 파악하고, 이에 대해 RSSI(Received Signal Strength Indication)를 이용한 네트워크 탈퇴 예측 방법을 이용한 기법을 제시한다. 마지막으로 모의실험을 통해 측정 RSSI 신호 시간 간격에 따른 예측 성공률을 확인한다.