• Title/Summary/Keyword: Strength degradation

Search Result 1,119, Processing Time 0.032 seconds

Effect of Hysteretic Characteristics on Inelastic Seismic Design Spectra (비탄성 설계스펙트럼에 대한 이력거동 특성의 영향)

  • 오영훈;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.207-214
    • /
    • 1997
  • Current seismic design code is based on the assumption that the designed structures would be behaved inelastically during a severe earthquake ground motion. For this reason, seismic design forces calculated by seismic codes are much lower than the forces generated by design earthquakes which makes structures responding elastically. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factors known as "response modificaion factor". The effect of hysteretic behavior, as well as maximum ductility ratio and period on the inelastic strength demand is investigated. Special emphasis is given to the effects of the hysteretic characteristics such as strength degradation or pinching. Results indicate that inelastic strength demands are strongly dependent on level of inelastic deformation, period and hysteretic behavior.

  • PDF

Effect of Amorphous Steel Fiber on the Spalling Characteristics of High-strength Concrete (고강도콘크리트의 폭렬특성에 미치는 비정질 강섬유의 영향)

  • Kim, Jong-Ho;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.32-33
    • /
    • 2019
  • This study evaluated the effect of amorphous steel fibers on the spalling characteristics of high-strength concrete. with mix proportions of polypropylene (PP) fibers of 0.15% by concrete volume, and proportions of amorphous steel fibers of 0.3% and 0.5% by concrete volume. In the range of 0.3 vol% of amorphous steel fiber, the effect of suppression of the spalling and the prevention of degradation of strength was shown, but it was evaluated to be ineffective in the suppression of the spalling due to interferences in formation of pore network in the range of 0.5 vol.%.

  • PDF

Experimental investigation of infilled r/c frames with eccentric openings

  • Kakaletsis, D.;Karayannis, C.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.231-250
    • /
    • 2007
  • The influence of masonry infills with eccentric openings on the seismic performance of reinforced concrete (r/c) frames that were designed in accordance with current code provisions are investigated. Eight 1/3-scale, single-story, single-bay frame specimens were tested under cyclic horizontal loading up to a drift level of 4%. In all examined cases the shear strength of columns was higher than the cracking shear strength of solid infill. The parameters investigated include the shape and the location of the opening. Assessment of the behavior of the frames is also attempted, based on the observed failure modes, strength, stiffness, ductility, energy dissipation capacity and degradation from cycling loading. Based on these results there can be deduced that masonry infills with eccentrically located openings has been proven to be beneficial to the seismic capacity of the bare r/c frames in terms of strength, stiffness, ductility and energy dissipation. The location of the opening must be as near to the edge of the infill as possible in order to provide an improvement in the performance of the infilled frame.

Factors Affecting Longitudinal Tensile Strength of SiC/Ti-Al-V Composites Manufactured by Plasma Spraying

  • Baik, Kyeong-Ho
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.514-515
    • /
    • 2006
  • In this study, multi-ply SiC fiber reinforced Ti-6Al-4V composites have been manufactured by plasma spraying and subsequent vacuum hot pressing. Two different sizes of Ti-6Al-4V feedstock powders were used for plasma spraying to form matrix. A considerable amount of oxygen was incorporated into as-sprayed Ti matrix during plasma spraying, and consequently caused matrix embrittlement. The use of coarse-sized feedstock powder reduced oxygen contamination, but tended to increase fiber spacing irregularity and fiber strength degradation. Longitudinal tensile strength and ductility of the composites were mainly affected by the matrix oxygen content.

  • PDF

Controlled Degradation of Modal Fiber (모달섬유의 취화 특성)

  • Yoon, Nam Sik;Cho, Kwang Ho;Yoon, Suk Chun;Lim, Yong Jin
    • Textile Coloration and Finishing
    • /
    • v.8 no.3
    • /
    • pp.31-35
    • /
    • 1996
  • Modal fabric was pretreated with sodium hydroxide, sodium persulfate, and their combined mixture by pad-steaming procedure. The tearing strength of the pretreated modal fabric was measured for subsequent microfibrillation. The solubility of modal fiber in sodium hydroxide solution was highest at 10 % concentration of sodium hydroxide. Extended steaming of the modal fabric padded with 6% sodium hydroxide solution did not reduce the tearing strength appreciably. 2% sodium persulfate pretreatment greatly reduced the tearing strength of modal fabric within 7 minutes of steaming time. The pretreatment with combined composition of sodium hydroxide and sodium persulfate brought about stable reduction in tearing strength within 1 minute of steaming time, which would be appricable to the continuous pretreatment of modal fabric for microfibrillation. Microfibrillation behavior of the pretreated modal fabric was tested also.

  • PDF

Damage Characteristics of Quasi Isotropic Composite Laminates Subjected to Low Velocity Impact (준등방성 복합적층판의 저속충격에 의한 손상특성)

  • Kim, J.H.;Jeon, J.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.135-141
    • /
    • 1997
  • Low velocity impact test and compressive residual strength test after impact were performed by using Hercules AS4/3501-6[45/0/-45/90]$_{2s}$ laminated plate to investigate the low velocity impact damage behavior and the post-impact strength degradation on orthotropic composite laminate plate. Due to the lateral impact losd, the load path showed "" shape according to the laminate central deflection. Damage in a laminate occurs by inclined matrix crack at the damage initiation load stage and vertical matrix crack, occurs on the outer surface. Evaluating the compressive residual strength after the low velocty impact test, it could be found that there is a transient range where the compressive residual strength drop suddenly in the initial damage which is in the matrix crack range and the initial delamination area. is in the matrix crack range and the initial delamination area.

  • PDF

Effects of Bar Deformation Height on Bond Degradation Subject to Cyclic loading (반복하중시 철근 마디높이에 따른 부착 손상특성)

  • Lee, Jae-Yuel;Kim, Byong-Kook;Hong, Gi-Suop;Choi, Oan-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • One of the reasons for brittle failure in reinforced concrete structures subjected to severe earthquake is due to large local bond-slippage of bars resulting in fast bond degradation between reinforcing bars and concrete. This study aims to evaluate effects of bar deformation height on bond performance, specially, bond degradation under cyclic loading. Bond test specimens were constructed with machined bars with high relative rib areas. The degree of confinement by transverse bars is also another key parameters in this bond test. From test results, amounts of energy dissipation are calculated and compared for each parameter. Test results show that bond strength and stiffness drops significantly as cycles increases. The confinement and high relative rib area are effective to delay bond degradation, as the reduction of bond strength of cyclic loading compared to monotonic loading decreased for bars with large confinement and high relative rib areas. The energy dissipation also increases as the degree of confinement and relative rib area increases. However, tested bars with very high rib areas show that the bond may be damaged at relatively small slip because of high stiffness. The study will help to understand the bond degradation mechanism due to bar deformation height under cyclic loading and be useful to develop new deformed bars with high relative rib areas.

State-of-Arts of Primary Concrete Degradation Behaviors due to High Temperature and Radiation in Spent Fuel Dry Storage (사용후핵연료 건식저장 콘크리트의 고열과 방사선으로 인한 주요 열화거동 분석)

  • Kim, Jin-Seop;Kook, Donghak;Choi, Jong-Won;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • A literature review on the effects of high temperature and radiation on radiation shielding concrete in Spent Fuel Dry Storage is presented in this study with a focus on concrete degradation. The general threshold is $95^{\circ}C$ for preventing long-term degradation from high temperature, and it is suggested that the temperature gradient should be less than $60^{\circ}C$ to avoid crack generation in concrete structures. The amount of damage depends on the characteristics of the concrete mixture, and increases with the temperature and exposure time. The tensile strength of concrete is more susceptible than the compressive strength to degradation due to high temperature. Nuclear heating from radiation can be neglected under an incident energy flux density of $10^{10}MeV{\cdot}cm^{-2}{\cdot}s^{-1}$. Neutron radiation of >$10^{19}n{\cdot}cm^{-2}$ or an integrated dose of gamma radiation exceeding $10^{10}$ rads can cause a reduction in the compressive and tensile strengths and the elastic moduli. When concrete is highly irradiated, changes in the mechanical properties are primarily caused by variation in water content resulting from high temperature, volume expansion, and crack generation. It is necessary to fully utilize previous research for effective technology development and licensing of a Korean dry storage system. This study can serve as important baseline data for developing domestic technology with regard to concrete casks of an SF (Spent Fuel) dry storage system.

Evaluation of Suitable REDD+ Sites Based on Multiple-Criteria Decision Analysis (MCDA): A Case Study of Myanmar

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.6
    • /
    • pp.461-471
    • /
    • 2018
  • In this study, the deforestation and forest degradation areas have been obtained in Myanmar using a land cover lamp (LCM) and a tree cover map (TCM) to get the $CO_2$ potential reduction and the strength of occurrence was evaluated by using the geostatistical technique. By applying a multiple criteria decision-making method to the regions having high strength of occurrence for the $CO_2$ potential reduction for the deforestation and forest degradation areas, the priority was selected for candidate lands for REDD+ project. The areas of deforestation and forest degradation were 609,690ha and 43,515ha each from 2010 to 2015. By township, Mong Kung had the highest among the area of deforestation with 3,069ha while Thlangtlang had the highest in the area of forest degradation with 9,213 ha. The number of $CO_2$ potential reduction hotspot areas among the deforestation areas was 15, taking up the $CO_2$ potential reduction of 192,000 ton in average, which is 6 times higher than that of all target areas. Especially, the township of Hsipaw inside the Shan region had a $CO_2$ potential reduction of about 772,000 tons, the largest reduction potential among the hotpot areas. There were many $CO_2$ potential reduction hot spot areas among the forest degradation area in the eastern part of the target region and has the $CO_2$ potential reduction of 1,164,000 tons, which was 27 times higher than that of the total area. AHP importance analysis showed that the topographic characteristic was 0.41 (0.40 for height from surface, 0.29 for the slope and 0.31 for the distance from water area) while the geographical characteristic was 0.59 (0.56 for the distance from road, 0.56 for the distance from settlement area and 0.19 for the distance from Capital). Yawunghwe, Kalaw, and Hsi Hseng were selected as the preferred locations for the REDD+ candidate region for the deforestation area while Einme, Tiddim, and Falam were selected as the preferred locations for the forest degradation area.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Parametric Studies (비탄성 국부좌굴을 고려한 철골 모멘트 접합부의 회전능력에 대한 변수 연구)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.625-632
    • /
    • 2008
  • In the companion paper (Model Development), an analytical model estimating the available rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames was proposed. In this paper, two limit states were considered as the connection rotation capacity criteria: (i) strength degradation failure when the strength falls below the nominal plastic strength due to the local buckling of the beam's cross-section and (ii) low-cycle fatigue fracture caused by plastic strain accumulation at the buckled flange after only a few cycles of high-amplitude deformation. A series of analyses are conducted using the proposed model with two limit states under monotonic and cyclic loadings. Beam section geometric parameters, such as flange and web slenderness ratios, varied over the practical ranges of H-shapedbeams to observe their effect on the rotation capacity and low-cycle fatigue life of pre-qualified WUF-W connections.