• 제목/요약/키워드: Strength degradation

Search Result 1,119, Processing Time 0.03 seconds

Application of Advanced Indentation System for Evaluati Tensile Property Degradation of Cr-Mo Steel (Cr-Mo 강의 열화도 평가를 위한 Advanced Indentation System의 응용)

  • Jang, Jae-Il;Choi, Yoel;Lee, Yun-Hee;Kwon, Dong-Il;Kim, Jeoung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.231-236
    • /
    • 2001
  • A newly developed Advanced Indentation System (AIS), which is a portable and nondestructive system for evaluating tensile properties, was used to measure mechanical behavior of materials used under high temperature and pressure conditions. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. Aging effects of Cr-Mo and Cr-Mo-V steel at high temperature were simulated. Tensile properties including yield strength and tensile strength at various temperature are obtained from the test. For all test materials and conditions, the AIS-derived results were in good agreement with those from conventional standard test method. Examples of the test results ate given and potential applications of the AIS to assess the integrity of aging structures are briefly discussed.

  • PDF

The Degradation of Cotton Fabrics by Bleaching Agents in Detergents (표백제 배합세제에 의한 면직물의 손상)

  • 김현숙;정혜원
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.5
    • /
    • pp.905-914
    • /
    • 1996
  • To study the effect of the bleaching agents in detergents on the degradation of cotton fabrics, the carboxyl contents, copper numbers, degree of polymerization, the change of tensile strengths and fiber surfaces of cotton fabric before and after washing were examined. The results obtained were as follows: As the cycles and temperature of washing increased, the carboxyl content of washed cotton fabric changed little but the copper unmber of cotton fabric was increased. At 6$0^{\circ}C$ , 8$0^{\circ}C$ the copper number of cotton fabric washed with soidum perborate (PB) was higher than that of with sodium percarbonate (PC). The degree of polymeriazation and tensile strength of cotton fabric were decreased and at higher temperature those were more decreased but were less decreased when tetraacetyehylenediamine (TAED) was added. The degree of polymerization had negative relation with copper unmber but with tensile strength of cotton fabric had positive relation. Cotton fiber surface was more degraded by bleaching agents and hydrogen peroxide exhaustion was increased as the temperature of washing increased. And hydrogen peroxide exhaustion had negative relation with the degree of polymerization.

  • PDF

Degradation and Preparation of Blend Films Using Natural Polymers Chitosan and Algin (키토산과 알긴을 이용한 블랜드필름의 제조와 분해)

  • 류정욱;이홍열;오세영
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.417-422
    • /
    • 1999
  • Algin and chitosan are known as biodegradable natural polymers. PVA is useful for the production of water soluble packaging, paper, textile sizes. PVA/Algin and PVA/chitosan films were prepared by solution blends method in the weight ratio of chitosan, algin for the purpose of useful biodegradable films. Thermal and mechanical properties of blend films such as DSC, impact strength, tensile strength and morphology by SEM were determined. As a result, The ratio of 10.0wt% PVA/chitosan films were similar to PVA at thermal and mechanical properties. PVA/Algin films were found that phase separation was occured as more than 25wt% increasing the blend ratio of algin. PVA/Algin films were observed to be less partially compatibility than 10wt% increasing the blend ratio of algin by DSC, mechanical properties and SEM. Blend films were completely degraded pH 4.0 better than 7.0, 10.0 in the buffer solution. Also, they were rapidly degraded in the enzyme( glucosidase) solution better than pH solution by enzymolysis.

  • PDF

Characteristics of Hydrogen Storage Alloy powder Compacts Using Polymer Binders (고분자 결합제를 이용한 수소저장합금 분말 성형체의 특성)

  • Kim, Chan-Jung;Kim, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.2
    • /
    • pp.81-89
    • /
    • 1999
  • Various characteristics - mechanical propertis, thermal cyclic hydriding characteristics and resistance to degradation by $H_2O$, CO in hydrogen - of hydrogen storage alloy powder compacts using PTFE and silicon sealant as a polymer binder were studied. Diametral tensile strength of 10wt% PTFE and 5wt% silicon sealant added compacts showed relatively high value of $4kg/cm^2$ and $10kg/cm^2$, respectively. Compacts show a good resistance to degradation by $H_2O$ in hydrogen. But hydrogen absorption rate and capacity of compacts were decreased by CO in hydrogen with the number of cycles. Cu coated and PTFE bonded compacts showed very small decrease of capacity and a good strength even after 1000 cycles of thermal hydriding and dehydriding.

  • PDF

Rebar corrosion effects on structural behavior of buildings

  • Yuksel, Isa
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1111-1133
    • /
    • 2015
  • Rebar corrosion in concrete is one of the main causes of reduction of service life of reinforced concrete buildings. This paper presents the influence of rebar corrosion on the structural behavior of reinforced concrete (RC) buildings subjected to strong earthquake ground motion. Different levels of rebar corrosion scenarios were applied on a typical four story RC frame. The deteriorated conditions as a result of these scenarios include loss in cross-sectional area and loss of mechanical properties of the reinforcement bars, loss in bond strength, and loss in concrete strength and its modulus of elasticity. Dynamic analyses of the frame with different corrosion scenarios are performed with selected strong earthquake ground motion records. The influences of degradation in both concrete and reinforcement on structural behavior are investigated by comparing the various parameters of the frame under different corrosion scenarios with respect to each other. The results show that the progressive deterioration of the frame due to rebar corrosion causes serious structural behavior changes such as change in failure mode. The intensity, propagation time, and extensity of rebar corrosion have very important effects on the level of degradation of steel and concrete, as well as on the earthquake behavior of the structure.

The Partial Discharge Properties of Oxidized Polyethylene (산화된풀리에틸렌의 부분방전 특성)

  • 이현수;한상옥
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.802-808
    • /
    • 1992
  • To investigate degradation procedure and life time of the oxidized PE and the unoxidized PE, alternative voltage is applied to the CIGRE Method-II (CM-II) electrode system, which is loaded artificial void, and measures the distribution of partial discharging generation. From the results, the samples etched by oxidation had wide degradation area of dielectric strength. Furthermore, discharge starting voltage was shifted to low voltage, the discharge generation frequency was high and consequently, the quantity of mean charge becomes small. Also, life time of the oxdized sample is shortened according as the oxidation time is longer.

  • PDF

Biodegradable Inorganic-Organic Composite Artificial Bone Substitute

  • Suh, Hwal;Lee, Jong-Eun;Ahn, Sue-Jin;Lee, Choon-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.1
    • /
    • pp.57-60
    • /
    • 1995
  • To develop an artificial bone substitute that is gradually degraded and replaced by the regenerated natural bone, the authors designed and produced a composite that is consisted of calcium phosphate and collagen. Human umbilical cord origin pepsin treated type I atelocollagen was used as the structural matrix, by which sintered or non-sintered carbonate apatite was encapsulated to form an inorganic-organic composite. With cross linking atelocollagen by UV ray irradiation, the resistance to both compressive and tensile strength was increased. Collagen degradation by the collagenase induced collagenolysis was also decreased.

  • PDF

A Study of Fatigue Strength Improvement for Cr-Mo Steel in Long Term service (장기간 사용한 Cr-Mo강의 피로강도향상 방법에 관한 연구)

  • 진영준
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.27-35
    • /
    • 2001
  • For the purpose of healing the degradation part, $CO_2$ laser beam was irradiated with different irradiation condition (porer, diameter, velocity and beam type) to find out optimum irradiation condition. The test series of hardness, residual stress measurement, and fatigue were carried out after the irradiation. Experimental results show that micro-hardness values on the surface of the irradiated specimens m approximately 2.5 times higher than those of un-irradiated ones. Fatigue tests show that the fatigue life was improved by the compressive residual stress after laser beam irradiation. However, some specimens with different conditions show the shorter fatigue life. It means that laser beam irradiation with optimum irradiation condition and optimum absorb energy, Q can improve the fatigue strength.

  • PDF

Seismic Response of Exterior Beam-Column-Slab connection using High-Strength Materials (고강도 재료를 사용한 외부 보-기둥-슬래브 접합부의 지진응답)

  • 장극관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.343-350
    • /
    • 1999
  • The purpose of this study is to compare the response of the high-strength concrete beam-column-slab subassembly with the response of a normal-strength concrete specimens. Four assemblies were designed 2/3 scale beam-column-slab joint(fc'=240kg/cm2 fc'=700kg/cm2) and tested to investigate seismic behaviour. From the test results 1) flexral cracks emerge to inside of bean deeply for high strength concrete member 2) the high-strength specimens represented stable hysteretic behaviour for the displacement ductility 5.5 but degradation in stiffness and strength and unstable hysteretic behaviors were observed owing to the brittleness of high-strength concrete beyond its range.

  • PDF

Properties of Slag Cement Mortar with Liquid Red Mud Neutralized with Sulfuric Acid (황산으로 중화시킨 액상레드머드 첨가 슬래그시멘트 모르타르의 특성)

  • Kim, Sang-Jin;Kang, Suk-Pyo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.123-124
    • /
    • 2022
  • In this paper, the characteristics of slag cement mortar added with neutralized liquid red mud with sulfuric acid and reduced pH were reviewed to improve the strength degradation of cement concrete added with liquid red mud. As a result, in the case of compressive strength up to 7 days, the strength of the cement mortar added with liquid red mud tends to increase compared to Plain. This shows that adding liquid red mud to cement mortar tends to increase the initial age strength, and the compressive strength on the 28th shows 74% of Plain when adding non-neutralized liquid red mud and 89% when adding sulfate neutralized red mud. Therefore, it is judged that the compression strength is improved by neutralizing the liquid red mud with sulfuric acid.

  • PDF