• Title/Summary/Keyword: Strength degradation

Search Result 1,115, Processing Time 0.025 seconds

Effect of degumming conditions on the fluorescence intensity of fluorescent silk cocoons: A combined experimental and molecular dynamics study

  • Chan Yeong, Yu;Ezekiel Edward, Nettey-Oppong;Elijah, Effah;Su Min, Han;Seong-Wan, Kim;Seung Ho, Choi
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.2
    • /
    • pp.56-69
    • /
    • 2022
  • Silk is a unique natural biopolymer with outstanding biocompatibility, high mechanical strength, and superior optical transparency. Due to its excellent properties, silk has been widely reported as an ideal biomaterial for several biomedical applications. Recently, fluorescent silk protein, a variant of native silk, has been reported as a biophotonic material with the potential for bioimaging and biosensing. Despite the realization of fluorescent silk, the traditional degumming process of fluorescence silk is crude and often results in fluorescence loss. The loss of fluorescent properties is attributed to the sensitivity of silk fibroin to temperature and solvent concentration during degumming. However, there is no comprehensive information on the influence of these processing parameters on fluorescence evolution and decay during fluorescent silk processing. Therefore, we conducted a spectroscopic study on fluorescence decay as a function of temperature, concentration, and duration for fluorescent silk cocoon degumming. Sodium carbonate solution was tested for degumming the fluorescent silk cocoons with different concentrations and temperatures; also, sodium carbonate solution is combined with Alcalase enzyme and triton x-100 to find optimal degumming conditions. Additionally, we conducted a molecular dynamics study to investigate the fundamental effect of temperature on the stability of the fluorescent protein. We observed degumming temperature as the prime source of fluorescent intensity reduction. From the MD study, fluorescence degradation originated from the thermal agitation of fluorescent protein Cα atoms and fluctuations of amino acid residues located in the chromophore region. Overall, degumming fluorescent silk with sodium carbonate and Alcalase enzyme solution at 25 ℃ preserved fluorescence.

An Experimental Study on the Mechanical Properties of High Modulus Carbon-Epoxy Composite in Salt Water Environment (염수 환경에 노출된 고강성 탄소/에폭시 복합재의 물성치 변화 연구)

  • Moon, Chul-Jin;Lee, Cheong-Lak;Kweon, Jin-Hwe;Choi, Jin-Ho;Jo, Maeng-Hyo;Kim, Tae-Gyeong
    • Composites Research
    • /
    • v.21 no.6
    • /
    • pp.1-7
    • /
    • 2008
  • The main objective of this study is to investigate the effect of salt water on the mechanical properties of a high modulus carbon-epoxy composite. Specimens were made of a carbon-epoxy composite UPN139B of SK Chemical and tested under inplane tension and shear after 0, 1, 3, 6, 9, and 12 months immersion in 3.5% salt water. Acceleration technique such as temperature elevation was not used. The tensile strengths and modulli in fiber and matrix direction did not show any remarkable degradation until 12 months immersion. In contrast to the tensile properties, shear strength and modulus started to gradually decrease up to about 10% of values of dry specimens after 12 months immersion. It was confirmed through the test that the material UPN139B can be an effective material for the shell structures in salt water to resist against the external pressure buckling because of the high fiber directional modulus and corrosion resistance.

An Experimental Study on the Mechanical Properties of Carbon-Epoxy Composites in Salt Water Environment (염수 환경에 의한 탄소/에폭시 복합재의 물성치 변화 연구)

  • Hur, Seong-Hwa;Kim, Jeong-Hee;Kim, Hong-Seok;Kweon, Jin-Hwe;Choi, Jin-Ho;Cho, Jong-Rae;Cho, Yoon-Shik
    • Composites Research
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2008
  • The main objective of this study is to investigate the effect of salt water on the mechanical properties of a carbon-epoxy composite material. Specimens were made of a carbon-epoxy composite USN125 and tested under inplane tension and shear after 0, 0.5, 1, 2, 3, 6, 9, and 12 months immersion in 3.5% salt water. Waterproof painting and acceleration technique were not applied. The tensile strengths and moduli in fiber and matrix directions did not show any remarkable degradation until 12 months immersion. In contrast to the tensile properties, shear strength and modulus started to degrade from the early stage of the immersion time and gradually decreased to 36% and 46% of dry values, respectively, after 12 months immersion.

A Review of the Physical Performance of Lightweight Aerated Concrete for Use as an Interior Core Material in Fire Doors (방화문 내부 심재로 적용하기 위한 경량기포콘크리트의 물리적 성능 검토)

  • Hong, Sang-Hun;Kim, Bong-Joo;Jung, Ui-In;Kim, Hae-Nah;Park, Jun-Seo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.111-112
    • /
    • 2023
  • With the development of cities, the density of the population is continuously increasing as buildings become larger and more high-rise, but since the Haeundae residential complex fire in Busan in 2010, there has been a growing need to meet the fire protection performance of buildings as large-scale fires continue to occur every year. On the other hand, fire doors, which are one of the fire protection performance of buildings, have been judged unqualified in 82% of cases when fire doors constructed on the actual site were inspected after completion. The reason for this is that paper honeycomb and glasswool, which are used as core materials for fire doors, absorb moisture, reducing thermal insulation performance, and sagging due to increased weight, leading to performance degradation due to warping in empty spaces. To overcome these problems, research is underway to apply lightweight aerated concrete, an inorganic material, as a core material. Therefore, in order to select a blowing agent that produces stable bubbles prior to the production of lightweight bubble concrete for application as a fire door inner core, this study examined the physical performance according to the type of blowing agent and dilution concentration, and the following conclusions were drawn. Compared to vegetable bubbles and independent bubbles, synthetic bubbles have 3~8% higher thermal conductivity than independent bubbles, but 3~6% lower slurry density than vegetable bubbles, and 2~13% higher compressive strength, which is thought to be an improvement of synthetic bubbles.

  • PDF

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

Accelerated Laboratory Experiments Investigating Weathering of Volcanic Rocks from Yuchon Group Exposed to Seawater and Acidified Distilled Water (실내인공풍화가속실험을 통한 해수와 산성증류수에 대한 유천층군 화산암의 풍화 특성 연구)

  • Ik Woo
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.25-38
    • /
    • 2024
  • Laboratory tests of accelerated artificial weathering compared the effects of seawater and acidified distilled water on rock weathering. The experiments simulated chemical and physical weathering of five different types of volcanic rock by applying 45 freeze-thaw cycles using seawater and acidified distilled water (pH 3), both at 70℃. The physical properties and uniaxial compressive strength (UCS) of the rocks were measured after 15 and 45 cycles of artificial weathering. Most of degradation of physical properties appeared within the first 15 cycles, and acidified distilled water had a greater effect than seawater. Analysis of variance (ANOVA) statistically evaluated the differences in UCS of the different rock types during the tests. The rate of UCS reduction after 45 cycles was similar across the samples, being independent of the rock type and the trend of changes in physical properties. In contrast to the changes in the physical properties, the UCS was more affected by seawater than by acidified distilled water.

Mechanical properties and durability of roller-compacted concrete incorporating powdered and granulated blast furnace slag in frost regions

  • Morteza Madhkhan;Mohsen Shamsaddini;Amin Tanhadoust
    • Structural Engineering and Mechanics
    • /
    • v.90 no.5
    • /
    • pp.467-480
    • /
    • 2024
  • The mechanical properties and durability of concrete pavements may be degraded in extreme situations, resulting in the need for partial repair or total replacement. During the past few decades, there has been a growing body of research on substituting a portion of Portland cement with alternative cementitious materials for improving concrete properties. In this study, two different configurations of powdered and granulated blast furnace slag were implemented, replacing fine aggregates (by 12 wt.%) and Portland cement (by 0, 20, 40, and 60 wt.%) in the making of roller-compacted concrete (RCC) mixes. The specimens were fabricated to investigate the mechanical properties and durability specifications, involving freeze-thaw, salt-scaling, and water absorption resistance. The experimental results indicated that the optimum mechanical properties of RCC mixes could be achieved when 20-40 wt.% of powdered slag was added to concrete mixes containing slag aggregates. Accordingly, the increases in compressive, tensile, and flexural strengths were 45, 50, and 28%, in comparison to the control specimen at the age of 90 days. Also, incorporating 60 wt.% of powdered slag gave rise to the optimum mix plan in terms of freeze-thaw resistance such that a negligible strength degradation was experienced after 300 cycles. In addition, the optimal moisture content of the proposed RCC mixtures was measured to be in the range of 5 to 6.56%. Furthermore, the partial addition of granulated slag was found to be more advantageous than using entirely natural sand in the improvement of the mechanical and durability characteristics of all mixture plans.

Evaluation of Chloride and Chemical Resistance of High Performance Mortar Mixed with Mineral Admixture (광물성 혼화재료를 혼입한 고성능 모르타르의 염해 및 화학저항성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Choi, Sung-Yong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.618-625
    • /
    • 2018
  • With the passing of time, exposed concrete structures are affected by a range of environmental, chemical, and physical factors. These factors seep into the concrete and have a deleterious influence compared to the initial performance. The importance of identifying and preventing further performance degradation due to the occurrence of deterioration has been greatly emphasized. In recent years, evaluations of the target life have attracted increasing interest. During the freezing-melting effect, a part of the concrete undergoes swelling and shrinking repeatedly. At these times, chloride ions present in seawater penetrate into the concrete, and accelerate the deterioration due to the corrosion of reinforced bars in the concrete structures. For that reason, concrete structures located onshore with a freezing-melting effect are more prone to this type of deterioration than inland structures. The aim of this study was to develop a high performance mortar mixed with a mineral admixture for the durability properties of concrete structures near sea water. In addition, experimental studies were carried out on the strength and durability of mortar. The mixing ratio of the silica fume and meta kaolin was 3, 7 and 10 %, respectively. Furthermore, the ultra-fine fly ash was mixed at 5, 10, 15, and 20%. The mortar specimens prepared by mixing the admixtures were subjected to a static strength test on the 1st and 28th days of age and degradation acceleration tests, such as the chloride ion penetration resistance test, sulfuric acid resistance test, and salt resistant test, were carried out at 28 days of age. The chloride diffusion coefficient was calculated from a series of rapid chloride penetration tests, and used to estimate the life time against corrosion due to chloride ion penetration according to the KCI, ACI, and FIB codes. The life time of mortar with 10% meta kaolin was the longest with a service life of approximately 470 years according to the KCI code.

Freeze-thaw Resistance Estimation of Concrete using Surface Roughness and Image Analysis (콘크리트의 동결융해 저항성 추정을 위한 표면 거칠기 및 이미지 분석의 적용성)

  • Lee, Binna;Lee, Jong Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • As part of a research dedicated to the field evaluation of the durability of concrete subjected to freezing-thawing, this study analyzes the relationship between the surface roughness and the relative dynamic elastic modulus through image analysis. Four mix compositions with water-to-binder ratios (W/B) of 40%, 50%, 60% and 70% and without AE agent were considered to provoke early freezing. The basic physical properties of the mixes including the relative dynamic elastic modulus and the compressive strength were first evaluated experimentally according to W/B. Then, tests were performed to measure the surface roughness followed by photographs and SEM image analysis. The measured surface roughness tended to increase with larger number of freezing-thawing cycles regardless of W/B. The relative dynamic elastic modulus appeared to increase gradually with the number of cycles for the relatively denser mixes with W/B of 40% and 50%. Besides, the surface roughness increased only at rupture for the mixes with W/B of 60% and 70%. Moreover, the analysis of the photographs of the surface of the mixes with W/B of 40% and 50% revealed that the degradation progressed gradually from the surface with the freezing-thawing cycles. However, for the mixes with W/B of 60% and 70%, apparent change of the surface remained very insignificant until rupture at which damage like cracking could be observed. Consequently, the analysis of surface photograph or the measurement of the surface roughness presented some limitation in assessing the degree of freezing-thawing-induced degradation in case of relatively porous specimens. On the other hand, the photograph and surface roughness appeared to be sufficient for assessing such degradation for the mixes with W/B of 40% and 50%. Accordingly, the image of the surface and the surface roughness are potentially applicable on site for the assessment of freezing-thawing damages in relatively dense mixes.

THE EFFECT OF PRIMING ETCHED DENTIN WITH SOLVENT ON THE MICROTENSILE BOND STRENGTH OF HYDROPHOBIC DENTIN ADHESIVE (산 부식된 상아질에 대한 용매를 이용한 프라이밍이 소수성 상아질 접착제의 미세인장접착강도에 미치는 영향)

  • Park, Eun-Sook;Bae, Ji-Hyun;Kim, Jong-Soon;Kim, Jae-Hoon;Lee, In-Bog;Kim, Chang-Keun;Son, Ho-Hyun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Deterioration of long-term dentin adhesion durability is thought to occur by hydrolytic degradation within hydrophilic domains of the adhesive and hybrid layers. This study investigated the hypothesis that priming the collagen network with an organic solvent displace water without collapse and thereby obtain good bond strength with an adhesive made of hydrophobic monomers and organic solvents. Three experimental adhesives were prepared by dissolving two hydrophobic monomers, bisphenol-A-glycidylmethacrylate (Bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA), into acetone, ethanol or methanol. After an etching and rinsing procedure, the adhesives were applied onto either wet dentin surfaces (wet bonding) or dentin surfaces primed with the same solvent (solvent-primed bonding). Microtensile bond strength (MTBS) was measured at 48 hrs, 1 month and after 10,000 times of thermocycles. The bonded interfaces were evaluated using a scanning electron microscope (SEM). Regardless of bonding protocols, well-developed hybrid layers were observed at the bonded interface in most specimens. The highest mean MTBS was observed in the adhesive containing ethanol at 48 hrs. With solvent-primed bonding, increased MTBS tendencies were seen with thermo cycling in the adhesives containing ethanol or methanol. However, in the case of wet bonding, no increase in MTBS was observed with aging.