DOI QR코드

DOI QR Code

콘크리트의 동결융해 저항성 추정을 위한 표면 거칠기 및 이미지 분석의 적용성

Freeze-thaw Resistance Estimation of Concrete using Surface Roughness and Image Analysis

  • 투고 : 2017.09.25
  • 심사 : 2017.12.12
  • 발행 : 2018.05.01

초록

본 연구에서는 동결융해 작용을 받는 콘크리트의 내구성을 현장에서 평가하기 위한 일환으로 표면 거칠기 값과 이미지 분석을 대상으로 상대동탄성계수와의 관계를 분석하였다. 배합은 물-시멘트비에 따라 40%, 50%, 60% 및 70% 총 4배합으로 수행하였으며 동해를 조기에 발현시키기 위하여 AE제를 사용하지 않았다. 실험은 물-시멘트비에 따라 상대동탄성계수 및 압축강도 등의 기본 물성 시험과 표면 거칠기 측정, 화상 이미지 및 SEM 이미지 분석을 수행하였다. 표면 거칠기 시험 결과 물-시멘트비에 상관없이 전반적으로 싸이클이 증가함에 따라 표면거칠기 값이 증가하는 경향을 보였으며 상대적으로 조밀한 40% 및 50%의 경우 상대동탄성계수가 60% 이하인 시점까지 서서히 증가하는 경향을 보였으나, 60% 및 70%의 경우 파괴 시점에서만 표면 거칠기 값이 증가하였다. 또한, 표면부 화상 이미지 분석에서도 물-시멘트비 40% 및 50%의 경우 동결융해 싸이클이 진행되는 과정에서 표면부터 서서히 열화가 진행되는 과정을 확인할 수 있었으나 60% 및 70%의 경우 표면부의 변화가 미미하다 파괴 시점에서 균열 등의 손상을 확인할 수 있었다. 따라서, 상대적으로 수밀하지 않은 시험체의 경우 화상 이미지나 표면 거칠기 등의 인자로 동결융해의 열화 정도를 판별하기에는 일부 제한이 있을 것으로 판단되며 상대적으로 수밀한 W/C 40% 및 50%의 경우 표면 거칠기 및 표면부 화상 이미지로 동해의 열화 진행 정도를 판단할 수 있었으며 향후 현장에서 표면 거칠기 및 이미지 분석을 적용할 수 있을 것으로 판단된다.

As part of a research dedicated to the field evaluation of the durability of concrete subjected to freezing-thawing, this study analyzes the relationship between the surface roughness and the relative dynamic elastic modulus through image analysis. Four mix compositions with water-to-binder ratios (W/B) of 40%, 50%, 60% and 70% and without AE agent were considered to provoke early freezing. The basic physical properties of the mixes including the relative dynamic elastic modulus and the compressive strength were first evaluated experimentally according to W/B. Then, tests were performed to measure the surface roughness followed by photographs and SEM image analysis. The measured surface roughness tended to increase with larger number of freezing-thawing cycles regardless of W/B. The relative dynamic elastic modulus appeared to increase gradually with the number of cycles for the relatively denser mixes with W/B of 40% and 50%. Besides, the surface roughness increased only at rupture for the mixes with W/B of 60% and 70%. Moreover, the analysis of the photographs of the surface of the mixes with W/B of 40% and 50% revealed that the degradation progressed gradually from the surface with the freezing-thawing cycles. However, for the mixes with W/B of 60% and 70%, apparent change of the surface remained very insignificant until rupture at which damage like cracking could be observed. Consequently, the analysis of surface photograph or the measurement of the surface roughness presented some limitation in assessing the degree of freezing-thawing-induced degradation in case of relatively porous specimens. On the other hand, the photograph and surface roughness appeared to be sufficient for assessing such degradation for the mixes with W/B of 40% and 50%. Accordingly, the image of the surface and the surface roughness are potentially applicable on site for the assessment of freezing-thawing damages in relatively dense mixes.

키워드

참고문헌

  1. A. Nowak-Michta (2013), Water-binder ratio influence on de-icing salt scaling of fly ash concretes. Procedia Engineering, 57, 823-829. https://doi.org/10.1016/j.proeng.2013.04.104
  2. Ahn, Young-Ki, and Lee, ChaecGue (2006), The Countermeasure of Deteriorated Concrete, Journal of the Korea Institute for Structural Maintenance Inspection, 10(3), 61-74.
  3. Choi, Yoon Suk, Won, Min Sik, Yi, Seong Tae, and Yang, Eun Ik (2012), Characteristics of Pore Structure and Chloride Penetration Resistance of Concrete Exposed to Freezing-Thawing. Journal of the Korea Institute for Structural Maintenance Inspection, 16(6), 73-81. https://doi.org/10.11112/jksmi.2012.16.6.073
  4. Jong-Suk Lee, Ki-Hong Ahn, Do-Gyeum Kim, and Jung-Jun Park (2010), Distribution Properties of Airborne Chlorides in Korea. Journal of the Korea Concrete Institute, 22(6), 769-776. https://doi.org/10.4334/JKCI.2010.22.6.769
  5. Kim, G. Y., Kim, M. H., Cho, B. S. and Lee, S. H. (2007), The Evaluation of Surface Scaling and Resistance of Concrete to Frost Deterioration with Freezing-Thawing Action by Salt Water. Journal of the Korea Institute for Structural Maintenance Inspection, 11(6), 143-151.
  6. Lee Beung Duk Kim, Hyun Joong and Kang Hye Jin (2008), Affecting Analysis of Air Content on the Freeze-Thaw Durability of Concrete, KCI Concrete Journal, pp.565-566.
  7. Lee, Byung Duk (2010), Effect of Air Contents, Deicing Salts, and Exposure Conditions on the Freeze-Thaw Durability of the Concrete. International Journal of Highway Engineering, 12(2), 107-113.
  8. Lee, Hoi-Keun Sohn, Yu-Shin Kim, Han-Jun Lee, Seung-Hoon (2006), An Experimental Study on the Improvement of Freezing-Thawing Resistance of Gutter Concrete. Journal of the Korea Concrete Institute, 18(2), 577-580.
  9. Ministry of Science & Technology (2015) Long Term Measurement of Airborne Chlorides and Durability of Concrete Mixed with Sea Sand.
  10. P. C. Aitcin (2000), Cement of yesterday and today concrete of tomorrow. Cement and Concrete Research, 30, 1349-1359. https://doi.org/10.1016/S0008-8846(00)00365-3
  11. P. V. Heede, J. Fumiere, N. D. Belie (2013), Influence of air entraining agents on deicing salt scaling resistance and transport properties of high-volume fly ash concrete. Cement and Concrete Composites, 37, 293-303. https://doi.org/10.1016/j.cemconcomp.2013.01.005
  12. Yang, E. I., Choi, Y. S. (2011), Characteristics of Pore Structures and Compressive Strength in Calcium Leached Concrete Specimens. Journal of the Korea Concrete Institute, 23(5), 647-656. https://doi.org/10.4334/JKCI.2011.23.5.647