• Title/Summary/Keyword: Strength Improvement

Search Result 2,915, Processing Time 0.029 seconds

Improvement of Pulp Handsheet Strength Properties by Polylactic Acids

  • Hou, Q.X.;Chai, X.S.;Yang, R.;Ragauskas, A.J.
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.395-400
    • /
    • 2006
  • Polylactic acids polymer (PLA) was applied as an additive to improve the strength properties of handsheets prepared from three unbleached southern pine kraft pulps with different kappa number and an aspen bleached chemithermomechanical pulp (BCTMP). The results showed that PLA could greatly improve the tensile and burst strength of the pulp handsheets. Heat pressing effect was also important to enhance the strength properties. For unbleached kraft pulps, it was found that an appropriate amount of residual lignin in pulps had a positive effect on the handsheets strength improvement when adding PLA. The thickness of the handsheet did not change the PLA strengthening effect. In general, PLA effect on tear strength improvement could be neglected. However, it had a significant effect on the improvement of tear strength for the aspen BCTMP handsheets not containing sufficient amount of fines.

  • PDF

Early Strength Development Properties of Concrete using Early Strength Improvement Type Cement (조기강도 개선형 시멘트를 사용한 콘크리트의 조기강도 발현 특성)

  • Park, Kyu-Yeon;Kim, Yong-Ro;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2013
  • In this research, early strength development performance of early strength improvement type ordinary cement which is economically feasible early strength cement(Type III), improved early strength ordinary cement(Type I), was estimated to derive minimum curing temperature and proper water to cement ratio according to cement for early strength development through examination of fresh concrete properties and compressive strength according to water to cement ratio curing $10^{\circ}C$, $15^{\circ}C$ and $20^{\circ}C$ to suggest fundamental data for practical use of early strength concrete.

Optimization of the Paper Making Raw Materials for Improvement of the Internal Bonding Strength of Printing Paper (내부 결합 강도 개선을 위한 인쇄용지 제조 최적화 연구)

  • Kim, Byung-Hun
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.3
    • /
    • pp.35-43
    • /
    • 2012
  • Internal bonding strength of printing paper was increased with sea-algae pulp treatment. Spacially, 9% contents sea-algae pulp treatment in the hardwood pulp are more effective than in the softwood pulp. Most effective mixture ratio of the raw matrials for improvement of the internal bonding strength are softwood pulp 30%, hardwood pulp 70%, sea-algae pulp 9%. Internal bonding strength is effective in more sea-algae pulp contents and softwood pulp contents and wetness.

An Experimental Study on Strength Characteristics of Clay Mixed with Organic Acid Ground Improvement Material (유기산계 지반개량재를 혼합한 점토의 강도 특성에 관한 실험적 연구)

  • Im, Soyeong;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.5-9
    • /
    • 2013
  • In this study, it was examined a strength characteristic of organic acid material that is eco-friendly and low energy as a soil improving material. The object of this study is to analysis of strength changes with observing the clay mixed organic acid material through the unconfined compression strength test and triaxial compression test during 28 days. As a result of the tests, the strength of clay mixed organic acid material is increased when the more ages are prolonged, the more organic acid material mixture ratio growed. Therefore, in grasping the strength improvement effects of clay by organic acid material mixing, it confirmed that organic acid material as soil improving material is effective through unconfined compression strength test and triaxial compression test. Through this test, the definite strength increase is confirmed according to the mixture of the organic acid material and the possibility of soil improvement is also confirmed based on this result. From now on, detailed examination and field test will help closely to definite strength characteristics.

The Improvement Effects of Soft Ground by Quick Lime Pile (생석회파일에 의한 연약지반개량효과)

  • 천병식;고갑수;장은석;임지섭;이용한
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.383-389
    • /
    • 1999
  • This paper is a study on the improvement effects by quick lime pile through theoretical analysis and in-situ construction test. Effects of strength increase is studied to verify the improvement effects of soft ground arounding quick lime pile. First, engineering characteristics of quick lime and ground was studied, in the second place, laboratory test(consolidation test, triaxial compression test) and in-situ test(portable cone penetration test, vane test) were peformed for verification of strength increase of adjacent ground. Finally, the results of in-situ test were compared with those of theorecal study. From in-situ test results, strength at 28th curing days(6.11-6.55t/㎡) was twice as great as strength before improvement(3.06t/㎡) and was slightly greater than theoretical value(4.95t/㎡).

  • PDF

The Effects of Quadriceps Setting Exercise and Electrical Stimulation on Improvement of Quadriceps Muscle Strength (대퇴사두근 등척성 운동(QSE)과 전기자극(ES)이 대퇴사두근의 근력 증진에 미치는 효과)

  • Choi, Jae-Cheong;Han, Dong-Uck
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.2
    • /
    • pp.273-280
    • /
    • 2001
  • The purpose of this study was to analyze the effect of quadriceps setting exercise(N= 10) and electrical stimulation(N= 10) on improvement of quadriceps muscle strength. The experiment were performed for 6weeks. The subject of this study was 20 college students(male) who had not any medical problems. The quadriceps muscle strength was evaluated by make use of the KIN COM(Isokinetic dynamometer). The electrical stimulator was used to stimulate the quadriceps muscle. The results were as follows: 1. The mean increment ratio was 29.6% for concentric muscle strength and 36.4% for eccentric muscle strength after quadriceps setting exercise(p<0.05). 2. The mean increment ratio was 21.2% for concentric muscle strength and 24.3% for eccentric muscle strength after electrical stimulation, but did not significantly higher than pre-electrical stimulation In this study, we have found that quadriceps setting exercise on left side affect the improvement of the muscle strength in college students(male). However, electrical stimulation did not affect on the muscle strength.

  • PDF

A Study for the Improvement on a Fatigue Life for Cr-Si Alloyed Valve Springs (Si-Cr강 밸브스프링의 피로수명 향상에 관한 연구)

  • 임철록;김태호;박상언;김기전;정태훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.421-424
    • /
    • 2000
  • Valve springs with high fatigue strength corresponding to the incresement of working stresses, are required for the higher generating power and the better fuel economy of automobile engines. For this purpose, high strength oil tempered wires are being used. By a method of the high strength for the valve spring, modification of manufacturing processes is being applied. In this case, the cause and effect for the improvement of the fatigue strength has not yet been explained obviously. Therefore, in this report, comparison of fatigue life between valve springs of conventional processes with oil tempered wires and new manufacturing processes was made. As a result of the fatigue test, the fatigue life of the latter was attained maximum 7 times than that of the former. It was cleared that the improvement of the fatigue life was caused by difference of compressive residual stresses at depth of 0.2mm below the inner side surface of both valve springs.

  • PDF

The Improvement of Surface Layer Using Cement-hardening Agents in Dredged and Reclaimed Marine Clay (준설매립된 해성점성토에서 시멘트계 고화재를 이용한 표층개량)

  • NAM JUNG-MAN;YUN JUNG-MANN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.46-51
    • /
    • 2004
  • The surface layer in dredged and reclaimed marine clay is improved by mixing of shallow soils and hardening agents, which is made of cement, containing some other special admixtures. Tests in both laboratory and field settings are performed to investigate the improvement effect and strength properties of cement-stabilized soils. The test results show that the hardening agent sufficiently improves the soil properties of the surface layer, while increasing the load-carrying capacity. The strength of cement-stabilized soils depends, primarily, on water-to-cement ratio and curing temperature. That is, the higher curing temperature and the longer curing time, the higher the strength in cement-stabilized soils. The high ratio of water-ta-cement results in a lower strength.

Evaluation of Early Compressive Strength of Concrete Using Early Strength Improvement Type Cement and Early Strength Activator (조기강도 개선형 시멘트 및 초기수화 촉진 혼화제를 사용한 콘크리트의 조기압축강도 발현특성 평가)

  • Park, Gyu-Yeon;Kim, Gyu-Yong;Choe, Gyoeng-Choel
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.322-328
    • /
    • 2014
  • In this study, revelation performance of concrete at early age according to types of cement, water reducing ratio of high performance superplasticizer and mixing of accelerator for early hydration was examined aiming for reduction of construction period of framework through securing strength at early age of concrete. It was observed that strength at early age, 5MPa in 12hours, 14MPa in 18hours, is secured by early strength improvement type cement and using promotion admixture for early hydration which are Sodium persulfate, Potassium hydroxide. Therefore cost reduction is expected to be possible in construction site by reducing construction period of frame work.

The Effects of Fine Particle Cement on the Quality of Fly Ash Concrete (플라이애시 사용 콘크리트의 품질에 미치는 미분시멘트의 영향)

  • Lee, Joung-Ah;Joeon, Kyu-Nam;Baek, Dae-Hyun;Park, Jong-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.113-117
    • /
    • 2009
  • Fly ash (called FA hereafter) that results from thermal power plants is a long-term strength improving substance with reactivity to pozzolan and has been used for long. However, large amount of FA shows many advantages such as reduction of hydratio energy, long-term improvement in strength and economic feasibility and also has difficulties from reduction in initial strength and durability. In a preceding study, fine particle cement was applied to test the effects on initial strength. Therefore in this study, the effects of fine particle cement on the quality of FA concrete were reviewed. The results can be summarized as follows. Liquidity was increased by the most at FC substitution ratio of 15%. Air capacity was reduced according to increasing substitution ratio of FA and FC. Compressive strength showed high strength expression at all ages when FC was substituted at 45%. Synthesizing the above results, appropriate mixing of FC in FA concrete can improve liquidity, reduce unit quantity and show improvement in strength. In particular, mixed use of FC seems effective in improving early quality of concrete.

  • PDF