• Title/Summary/Keyword: Strength Experiment

Search Result 2,879, Processing Time 0.03 seconds

Nominal Strength and Concrete Stress Block for Strength Analysis of Flexure and Compression Member (휨.압축 부재 강도 해석을 위한 콘크리트 압축 응력블럭 및 공칭 강도)

  • Lim, Kang-Sup;Sin, Sung-Jin;Choi, Jin-Ho;Lee, Jae-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.993-996
    • /
    • 2008
  • Compression stress block used to concrete structure design substitutes equivalent triangle, rectangle, trapezoid and parabola-rectangle stress block for actual concrete stress distribution. Its shape is different in design code of the major advanced countries. It reflects the material feature of each of country. Presently, compression stress block of korea concrete design code is equal to it of ACI code that doesn't reflect the material feature of the high strength concrete. So, many research conclusions showed that it is not reasonable. The study compares concrete stress blocks of the major advanced countries and does an experiment on concrete compression stress block to know the material feature of the concrete in korea. It obtains the operating load and the concrete strain in experiment and draw stress block parameters. It compares stress block parameters applied to design code with those by the experiment conclusion. In addition, It compares and analyses nominal axial force-moment diagram by the stress block of the major advanced countries.

  • PDF

A Study on the Wave Type and the Damage of Hair according to Water content when Heat permanent is treated - Focus on Damaged Hair -

  • Lee, Soon-Hee;Choi, Jung-Myung
    • Journal of Fashion Business
    • /
    • v.12 no.6
    • /
    • pp.11-22
    • /
    • 2008
  • The goal of this study is to provide beauticians with the fundamental material to use effectively heat permanent wave in beauty industry as well as their customer's satisfaction. It carried out an experiment with damaged hair of a woman in her late twenties to investigate the change of physical and morphological characteristics by its water content when performing heat permanent wave. After spreading 0g, 1g, 2g, 3g, and 4g of water on damaged hair respectively, heat permanent wave was treated and the change of hair was observed. The change of physical characteristic was compared through permanent wave form of hair, tensile strength and elongation. The change of morphological characteristic was observed through Scanning Electron Microscope(SEM) and Transmission Electron Microscope(TEM). The result of experiment on the physical specificity revealed that permanent wave form was the most ideal when the water content was 2g, also 3g. Though the materials with much moisture content formed the results were not satisfied. The material with 0g of water content didn't make the wave. In terms of tensile strength and elongation, tensile strength was generally reduced as per the damaged degree of hair. On the contrary, elongation was increased. It observed the changes of morphological characteristic that the damage on hair cuticle was deepen, as its moisture content was decreased, and cuticle's surface was worn away. The observation of fine structure on hair section by transmission electronic microscope also certainly showed the result that damaged hair having experience with chemical treatment had got much damaged to hair cuticle as well as hair cortex. Generally chemical treatment makes hair damaged. Under consideration of this aspect, the ultimate goal of this thesis is to minimize the damage of hair caused by chemical treatment and get the satisfaction on the hair style. According to the result of experiment, the damaged hair whose moisture content was 3g showed the best permanent wave form.

Physical and Morphological Characteristics Change of Hair according to Water Content when Heat Permanent Wave is treated (열펌 시술시 수분함량에 따른 모발의 물리적·형태학적 특성 변화)

  • Lee, Soon-Hee;Kim, Sung-Nam
    • Fashion & Textile Research Journal
    • /
    • v.10 no.3
    • /
    • pp.389-393
    • /
    • 2008
  • The purpose of this study is to provide beauticians with the fundamental material for them to use effectively heat permanent wave and satisfy their customers. It carried out an experiment with hair of a woman in her late twenties to investigate the change of physical and morphologic characteristics by its water content when performing heat permanent wave. It evaluated the water content as 0g, 1g, 2g, 3g and 4g respectively when performing the heat permanent wave on hair, then it compared and observed the wave type, tensile strength and elongation for its physical change also observed the morphologic change by scanning electronic microscope and transmission electronic microscope. The result of experiment on the physical specificity revealed that the wave was the most ideal when the water content was 2 g. The material with much water content made wave but the result was not satisfied. In the case of hair with water content of nearly 0g didn't make wave. In terms of tensile strength and elongation, the tensile strength was generally reduced as hair was damaged, on the contrary, the elongation was increased. It observed the change of morphologic characteristic and got the result that the damage on hair cuticle was deepen as its water content was decreased. It also showed the result that damage happened on hair cuticle more than hair cortex with the observation of fine structure on hair section by transmission electronic microscope. Generally chemical treatment damaged hair. Under consideration of this aspect, the ultimate goal of this thesis is to minimize the damage of hair caused by chemical treatment and get the satisfaction on the hair style. The result of experiment presented that the hair showed the best result when its water content was 2 g.

A Study on the Weight Optimization for the Passenger Car Seat Frame Part (상용승용차 시트프레임 부품의 중량 최적화에 관한 연구)

  • Jang, In-Sik;Min, Byeong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.

A Stress Transfer Length of Pre-tensioned Members Using Ultra High Performance Concrete (초고성능 콘크리트 프리텐션부재의 응력전달길이)

  • Kim, Jee-Sang;Choi, Dong-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.336-341
    • /
    • 2018
  • The prestressing force introduced to the tendon in pretensioned concrete members is transferred by direct bond between tendon and concrete, which requires a proper estimation of stress transfer length. The use of pretensiond and/or precast members with UHPC (Ultra High Performance Concrete) may give many advantages in quality control. This paper presents an experiment to estimate the stress transfer length of UHPC for various compressive strength levels of UHPC, cover depths, diameters of tendons and tensioning forces. According to the result of this experiment, the stress transfer length of UHPC member is much reduced comparing that of normal strength concrete. The reduction in stress transfer length of UHPC may come from the high bond strength capacity of UHPC. The transfer lengths obtained from this experiment are compared to those in current design code and a new formula is proposed.

Hydrolysis of Silk Fibroin with Boiling Water, Hydrochloric Acid, and Sodium Hydroxide -On the Quantitative Change in Terminal Amino Group Content- (견피브로인의 비등수 염산 및 수산화나트륨에 의한 가수분해 -말단아미노기의 정양적변화를 중심으로-)

  • Park Chan Hun;Dho Seong Kook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.11 no.1
    • /
    • pp.63-69
    • /
    • 1987
  • Silk fibroin is likely to be hydrolyzed by acids or alkalies at high temperature, and the degree of the hydrolysis has been inferred from the changes in tensile strength and elongation. But, in this experiment, it was intended to infer that from the quantitative changes in terminal aminp group content as well as in tensile strength and elongation. Silk yarn was treated with boiling water, hydrochloric acid, and sodium hydroxide under various conditions. The boiling water somewhat degraded silk fibroin. Silk yarn treated with sodium hydroxide contained more terminal amino group than that treated with hydrochloric acid. This result agreed fairly well with the loss in weight, tensile strength, and elongation: the terminal amino group content increased with the decrease of tensile strength, elongation, and weight. The damage by sodium hydroxide to the silk fibroin was greater than that by hydrochloric acid.

  • PDF

Strength properties of aggregates from various locations in mid-Korea (중부지역 골재원 종류 및 변화에 따른 콘크리트의 강도발현 특성)

  • Kim, Sang-Sup;Lee, Sun-Jea;Park, Yong-Jun;Lee, Myung-Hoo;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.120-121
    • /
    • 2015
  • In this research, to evaluate the influence of using non-KS aggregate on concrete performance, the engineering properties of normal strength concrete were assessed depending on the KS aggregate and non-KS aggregate from various sources in mid-Korea. From the experiment, when the non-KS aggregate was used, low compressive strength was achieved with increased water-to-cement ratio caused by increased unit water due to high absorption rate of the non-KS aggregate.

  • PDF

A Study on the Weld Line Strength in Injection Molded Part (사출성형품의 웰드라인 강도에 관한 연구)

  • 모정혁;홍형식;류민영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.211-216
    • /
    • 2003
  • Weld line in injection molded part is one of the defect in injection molding process. Weld line deteriorates not only appearance quality but mechanical property. In this study weld line strength has been examined according to the injection operational conditions, materials and mold designs. PC and PP were used, and four different specimens were used in this experiment. Weld line strength decreased as injection temperature increases for PC. It was more dependent on mold temperature than injection temperature for PP Among the four different specimens, uneven thickness specimen showed the highest weld line strength.

  • PDF

The properties of High Performance Concrete Using Fly Ash and Blast-Furnace Slag (플라이애쉬 및 고로슬래그를 사용한 고성능콘크리트의 특성)

  • 이승한;정용욱;박정준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.275-280
    • /
    • 1998
  • In this study, to increase fluidity and resistance of segregation of materials, the effect of each of the materials, which have effects on high performance concrete from investigating the properties of strength and drying shrinkage of high performance concrete made by the basic mix proportion used fly-ash and ground granulated blast-furnace slag after hardening, has been checked. By the results of this experiment, fluidity on W/C=34% was satisfied within slump-flow 65$\pm$5cm and U-type self-compacting difference 5cm. On the properties of strength, high performance concrete produced compressive strength over 400kg/$\textrm{cm}^2$ in 28days when powder was replaced by 40% of fly-ash and 60% of ground granulated blast-furnace slag. And compressive strength was taken over 600kg/$\textrm{cm}^2$ equal to non-replacement in 91days. Also, the length change of concrete with the addition of fly-ash was smaller than that without it. Therefore, it may be effective on the decrease of drying shrinkage volume.

  • PDF

An Experimental Study on The Strength Elevation of Porous Concrete according to the Mixing Proportion (배합요인에 따른 포러스콘크리트의 강도향상에 관한 실험적 연구)

  • 백용관;김재환;반성수;박선규;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.255-258
    • /
    • 1999
  • In recent years, the study on the porous concrete which has excellent permeability is actively advanced in the field of architectural and civil engineering. But porous concrete has a reciprocal concept in the aspect of comparative large and continuos void structure and reduction of void for insurance of the necessary strength on the mixing proportion, must have satisfied of the properties of these. Therefore this study is series of experiment for the strength elevation and evaluated the effect according to fine replacement ratio and levels of cement content. As a result, the strength of porous concrete was elevated by an increase of fine replacement ratio and cement content.

  • PDF