• Title/Summary/Keyword: Strength Estimation

Search Result 1,377, Processing Time 0.027 seconds

A Method for Estimation of Fatigue Properties from Hardness of Materials through Construction of Expert System (전문가시스템 구축을 통한 경도로부터의 재료의 피로특성 추정방법)

  • Jeon, Woo-Soo;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.114-119
    • /
    • 2001
  • An expert system for estimation of fatigue properties from simple tensile data of material is developed, considering nearly all important estimation methods proposed so far, i.e., 7 estimation methods. The expert system is developed to utilize for the case of only hardness data available. The knowledge base is constructed with production rules and frames using an expert system shell, UNIK. Forward chaining is employed as a reasoning method. The expert system has three major functions including the function to update the knowledge base. The performance of the expert system is tested using the 54 $\varepsilon$-N curves consisting of 381 $\varepsilon$-N data points obtained for 22 materials. It is found that the expert system developed has excellent performance especially for steel materials, and reasonably good for aluminum alloys.

  • PDF

Psychophysical Analysis of Color Sensation for Yellowish Natural Colorant- Dyed Fabrics by using Magnitude Estimation (Magnitude Estimation을 이용한 황색계열 천연염색직물 색채감성의 정신물리학적 분석)

  • Yi, Eun-Jou
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2008.10a
    • /
    • pp.143-146
    • /
    • 2008
  • The objectives of this study were to evaluate color sensation for yellowish natural dye fabrics using magnitude estimation to determine physical colorimetric factors significantly related to human sensibility by establishing power function in psychophysical analysis. Fourteen different yellowish fabrics dyed with natural colorants were selected as stimuli and subjective color sensations including brightness, heaviness, softness, strength, warmth, activeness, classicalness, femininity, and pleasantness for each stimulus were evaluated. As results, yellowish natural dye fabrics in general seemed to evoke feeling of brightness, femininity, and pleasantness more strongly than that of heaviness and classicalness. Most of color sensation were significantly related with more than one of physical color properties, which leads to establishing reliable power functions between them. In the power functions, these relationships could be utilized to design color-sensible natural dye textiles.

  • PDF

Estimation and Forecasting of Dynamic Effects of Price Increase on Sales Using Panel Data (패널자료를 이용한 가격인상에 따른 판매량의 동적변화 추정 및 예측)

  • Park Sung-Ho;Jun Duk-Bin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.2
    • /
    • pp.157-167
    • /
    • 2006
  • Estimating the effects of price increase on a company's sales is important task faced by managers. If consumer has prior information on price increase or expects it, there would be stockpiling and subsequent drops in sales. In addition, consumer can suppress demand in the short run. These factors make the sales dynamic and unstable. In this paper we develop a time series model to evaluate the sales patterns with stockpiling and short-term suppression of demand and also propose a forecasting procedure. For estimation, we use panel data and extend the model to Bayesian hierarchical structure. By borrowing strength across cross-sectional units, this estimation scheme gives more robust and reasonable result than one from the individual estimation. Furthermore, the proposed scheme yields improved predictive power in the forecasting of hold-out sample periods.

Indoor Location Estimation Using Wi-Fi RSSI Signals and Geomagnetic Sensors (Wi-Fi RSSI 신호와 지자기 센서를 이용한 실내 위치 추정)

  • Kim, Si-Hun;Kang, Do-Hwa;Kim, Kwan-woo;Lim, Chang Heon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.19-25
    • /
    • 2017
  • Recently, indoor LBS has been attracting much attention because of its promising prospect. One of key technologies for its success is indoor location estimation. A popular one for indoor positioning is to find the location based on the strength of received Wi-Fi signals. Since the Wi-Fi services are currently prevalent, it can perform indoor positioning without any further infrastructure. However, it is found that its accuracy depends heavily on the surrounding radio environment. To alleviate this difficulty, we present a novel indoor position technique employing the geomagnetic characteristics as well as Wi-Fi signals. The geomagnetic characteristic is known to vary according to the location. Therefore, employing the geomagnetic signal in addition to Wi-Fi signals is expected to improve the location estimation accuracy.

Mock-up Test of Setting Estimation System For AI-based Concrete Finishing Automation System (AI 기반 콘크리트 마감 자동화 시스템용 응결추정계의 Mock-up Test)

  • Han, Soo-Hwan;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.129-130
    • /
    • 2022
  • This study is conducted to identify improvements in the setting time estimation system through the Mock-up test of the finishing automation system and the setting estimation system. As a result of the study, it is necessary to adjust the spring strength of the setting time estimator and the diameter and length of the estimation needle so that the value of the hardness can be measured from 15HD to around 40HD.

  • PDF

Estimation of compression strength of polypropylene fibre reinforced concrete using artificial neural networks

  • Erdem, R. Tugrul;Kantar, Erkan;Gucuyen, Engin;Anil, Ozgur
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.613-625
    • /
    • 2013
  • In this study, Artificial Neural Networks (ANN) analysis is used to predict the compression strength of polypropylene fibre mixed concrete. Polypropylene fibre admixture increases the compression strength of concrete to a certain extent according to mix proportion. This proportion and homogenous distribution are important parameters on compression strength. Determination of compression strength of fibre mixed concrete is significant due to the veridicality of capacity calculations. Plenty of experiments shall be completed to state the compression strength of concrete which have different fibre admixture. In each case, it is known that performing the laboratory experiments is costly and time-consuming. Therefore, ANN analysis is used to predict the 7 and 28 days of compression strength values. For this purpose, 156 test specimens are produced that have 26 different types of fibre admixture. While the results of 120 specimens are used for training process, 36 of them are separated for test process in ANN analysis to determine the validity of experimental results. Finally, it is seen that ANN analysis predicts the compression strength of concrete successfully.

An Experimental Study on the High Early Strength Development Properties of Concrete according to Batcher Plant Test and Mock-up Test (배쳐플랜트배합시험 및 실대부재시험을 통한 콘크리트의 조기강도 발현특성에 관한 실험적 연구)

  • Lee, Ji-Hwan;Lee, Jong-suk;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.1-5
    • /
    • 2008
  • In this study, batcher plant composition test and mock-up test were carried out to conduct comparison and analysis on flow behavior and strength properties of concrete at early age. As a result, it was found that slump and amount of air in batcher plant composition test reached the target range. As for compressive strength, composition using HESPC showed the most excellent strength development. In mock-up test which was carried out to find out the strength properties, two methods with specimen and core test body both revealed HESPC as the most excellent composition. However, strength estimation with ultrasonic survey presented less reliable data. As a result of the previously conducted indoor composition test and the mock-up test in this study, target performance of concrete at early age was 4day/cycle. It was found that the optimum conditions that meet the required strength, 5MPa/18hr and 14MPa/36hr in mullion and transom are; curing temperature above 15℃, W/B 45%, unit-water 165kg/㎥ and CHC cement.

  • PDF

Comparison of methods to estimate storey stiffness and storey strength in buildings

  • A.R.Vijayanarayanan;M. Saravanan;M. Surendran
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.433-447
    • /
    • 2024
  • During earthquakes, regular buildings perform better than irregular buildings. In general, seismic design codes define a regular building using estimates of Storey Stiffness and Storey Strength. At present, seismic design codes do not recommend a specific method to estimate these parameters. Consequently, any method described in the literature can be applied to estimate the aforementioned parameters. Nevertheless, research has demonstrated that storey stiffness and storey strength vary depending on the estimation method employed. As a result, the same building can be regular or irregular, depending on the method employed to estimate storey stiffness and storey strength. Hence, there is a need to identify the best method to estimate storey stiffness and storey strength. For this purpose, the study presents a qualitative and quantitative evaluation of nine approaches used to determine storey stiffness. Similarly, the study compares six approaches for estimating storey strength. Subsequently, the study identifies the best method to estimate storey stiffness and storey strength using results of 350 linear time history analyses and 245 nonlinear time history analyses, respectively. Based on the comparison, it is concluded that the Fundamental Lateral Translational Mode Shape Method and Isolated Storey Method - A Particular Case are the best methods to estimate storey stiffness and storey strength of low-to-mid rise buildings, respectively.

Influence of Material Factors on Estimation of Compressive Strength of Concrete by P Type Schmidt Rammer (P형 슈미트해머에 의한 콘크리트의 압축강도 추정에 미치는 재료요인의 영향)

  • Han Cheon-Goo;Lee Yong-Sung;Han Mn-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.459-465
    • /
    • 2004
  • The present paper is intended to investigate the influence of materials such as cement, mineral admixture and aggregate, on the estimation of compressive strength by P type schmidt hammer. According to the results, the materials of concrete, such as the types of cement, the replacing ratio of mineral admixture, the kinds and maximum size of aggregate, hardly influence on non-destructive test by P type schmidt hammer except for alumina cement, hence, P type schmidt can be applicable to most of the concrete with a wide range. Since the correlativity between the rebound value of P type schmidt hammer and compressive strength is very favorable(above coefficient of correlation 0.96) regardless of materials, it is considered that compressive strength can be estimated comparatively exactly by P type schmidt hammer. The estimating formula of compressive strength by rebound value are derived from this experiment as following. $\cdot$Horizontal strike : Fc = 0.765RH - 5.74 (R=0.965) $\cdot$ Vertical strike Fc = 0.793RV - 8.66 (R=0.959)

Thermal Elasto-Plastic Deformation Analysis of Metal Matrix Composites Considering Residual Stress and Interface Bonding Strength (잔류응력과 계면접합강도를 고려한 금속복합재료의 열탄소성 변형 해석)

  • Kang, Chung-Gil;Seo, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.227-237
    • /
    • 1999
  • As the interface bonding phenomenon between the matrix and the reinforcements has a large effect on the mechanical properties of MMCs, a sugestion of the strength analysis technique considering the residual stress and the interface bonding phenomenon is very important for the design of pans and the estimation of fatigue behavior. In this paper the three dimensional finite element anaysis is performed during the elasto-plastic deformation of the particulate reinforced metal matrix composites. It was analyzed with the volume fractions in view of microscale. Bonding strength. interface separation and matrix void growth between the matrix and the reinforcements will be predicted on deformation under tensile loading. An interface seperation is estimated by the fracture criterion which is a critical value of generalized plastic work per unit volume. The shape of the reinforcement is assumed to be a perfect sphere. And the type of the reinforcement distribution is assumed as FCC array. The thermal residual stress in MMCs is induced by the heat treatment. It is included at the simulation as an initial residual stress. The element birth and death method of the ANSYS program is used for the estimation of the interface bonding strength, void generation and propagation. It is assumed that the fracture in the matrix region begin to occur under the external loading when the plastic work per unit volume is equal to the critical value. The fracture strain will be defined. The experimental data of the extruded $SiC_p$>/606l Al composites are compared with the theoretical results.

  • PDF