• 제목/요약/키워드: Stream function

검색결과 583건 처리시간 0.026초

보청천 유역의 평균조도계수 산정 (Estimation of Average Roughness Coefficients of Bocheong Stream Basin)

  • 전민우;이효상;안상억;조용수;전만우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.1306-1310
    • /
    • 2009
  • The roughness coefficients were estimated by the Manning's equation for the measured stage and flow velocity of Bocheong stream basin in Kum river. The relationships between the estimated roughness coefficients and the geomorphologic factors were formulated by the linear, logarithmic, exponential and power type function, thereafter correlation equations were presented. The correlation analysis was performed between the measured stream length and the basin area of Bocheong stream basin by the linear, logarithmic, exponential and power type function, and correlation equation for the stream length was given. The roughness coefficient has strong correlationship with stream slope, but low correlation coefficients with stream length and basin area. For the correlationship with the roughness coefficients and the stream slope, the logarithmic type function has the smallest correlation coefficient, on the other hand, the exponential type function has the largest correlation coefficient. For the relationship between the stream length and the basin area, the correlation coefficient of the logarithmic type function shows the smallest value, linear type function shows the largest value.

  • PDF

초기조건과 비선형 함수와의 상관관계를 이용한 스트림 암호시스템 분석 (Analysis of stream cipher system with initial condition and nonlinear function)

  • 김지홍;이만영
    • 전자공학회논문지A
    • /
    • 제33A권2호
    • /
    • pp.8-14
    • /
    • 1996
  • Key stream generator consisting of several linear feedback shift registers with a nonlinear combining function have been applied in stream cipher system. Most of the papers until now have been focusing on correlation atack and analysis of key stream generator with nonlinear combining function. Given some part of key stream sequences. We can generate identical output sequences with original key stream sequences if the feedback connection and the maximum order of nonlinear combination function are known.

  • PDF

하천망과 구릉지사면 사이의 상호작용에 따른 수문학적 응답함수의 거동특성 분석 (Analysis of Behavioral Properties for Hydrologic Response Function according to the Interaction between Stream Network and Hillslope)

  • 윤여진;김주철
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.661-669
    • /
    • 2011
  • The purpose of this study is quantitative analysis of the effects of the interactions between stream network and hillslope to hydrologic response functions. To this end general formulation of hydrologic response function is performed based on width function and grid framework. Target basins are Ipyeong and Tanbu basins. From the results of width function estimation even similar sized and closely located basins could have very different hydrologic response function. It is found out that the interactions between stream network and hillslope are essential factors of rainfall-runoff processes because their difference can make the hydrologic response function with positive skewness. The change of velocities of stream network and hillslope might influence the magnitude of peak but time to peak tends to more sensitively respond to velocities of stream network. Lag time of basin would be the result of complex interaction between drainage structures and dynamic properties of river basin.

해양파(海洋波)의 운동학(運動學)에 대한 중력파이론(重力波理論)과 Steam Function Method의 비교연구(比較硏究) (A Study on the Kinematics of Ocean Waves by Gravity Wave Theory and Stream Function Method)

  • 방윤규;장인화;최항순
    • 대한조선학회지
    • /
    • 제19권2호
    • /
    • pp.33-39
    • /
    • 1982
  • It is one of the basic problems of naval architecture and ocean engineering how to describe the wave kinematics normally under the assumption of an ideal fluid. At present, there are many wave theories available for design purposes. These can be classified into two groups: One is the analytic theory and the other is the numerical theory. This paper briefly introduces the stream function method of R.G. Dean which belongs to the latter group and shows its numerical evaluations exemplified for two cases: One is applied to observed waves and the other is for design waves. In the former case, the wave profiles are calculated by the stream function method and compared with those of the observed waves and also with the results of R.G. Dean. They show good agreement. In the latter case, the wave kinematics and wave loads on a column of diameter 1m are calculated by the stream function method and these are compared with those resulted from the 5th-order gravity wave theory. As a result of comparison the values by the stream function method are slightly larger than those by the 5th-order gravity wave theory but the difference are negligible. From this it is concluded that the stream function method is very useful. And as characteristics of the numerical theories, the stream function method of R.G. Dean can be easily extended to the higher order terms and can include easily the current velocity and the pressure distribution on the free surface. In addition, when the data of observed wave profile are given, this method can reproduced the observed wave profile as closely as possible so that this method seems to describe the ocean wave more realistically. And from standpoint of a mathematical principle the stream function method exactly satisfies the kinematic free-surface boundary condition.

  • PDF

수질학적 관점에서의 수문모델 유출량 보정 방법 평가 (Evaluating Calibration Methods of Stream Flow for Water Quality Management)

  • 전지홍;최동혁;김정진;김태동
    • 한국물환경학회지
    • /
    • 제25권3호
    • /
    • pp.432-440
    • /
    • 2009
  • The effect of selecting hydrologic item for calculating objective function on calibration of stream flow was evaluated by Hydrologic Simulation Porgram-Fortran (HSPF) linked with Model Independent Parameter Optimizer (PEST). Daily and monthly stream flow and flow duration were used to calculate objective function. Automated calibration focused on monthly stream was proper to analyze seasonal or yearly water budget but not proper to predict daily stream flow or percent chance flow exceeded. Calibration result focused on flow duration is proper to predict precent chance flow exceeded but not proper to analyze water budget or predict peak flow. These results indicate that hydrologic item calculated for objective function on calibration procedure could influence calibration results and watershed modeler should select carefully hydrologic item for the purpose of model application. Current, the criteria of stream flow of Korean TMDL is generated based on percent chance flow exceeded, so flow duration should be included to calculate objective function on calibration procedure for the estimation of criteria of stream flow using hydrologic model.

이차원 비압축성 유동 계산을 위한 Hermite 겹 3차 유동 함수법 (HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS)

  • 김진환
    • 한국전산유체공학회지
    • /
    • 제13권4호
    • /
    • pp.13-23
    • /
    • 2008
  • This paper is an extension of previous study[1] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite (serendipity) cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires four degrees-of-freedom at each element corners. Those degrees-of-freedom are the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational basis functions from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[2].

이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법 (HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS)

  • 김진환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

이차원 비압축성 유동 계산을 위한 Hermite 쌍 3차 유동 함수법 (HERMITE BICUBIC STREAM FUNCTION METHOD FOR INCOMPRESSIBLE FLOW COMPUTATIONS IN TWO DIMENSIONS)

  • 김진환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.33-41
    • /
    • 2008
  • This paper is an extension of previous study[9] on a development of a divergence-free element method using a hermite interpolated stream function. Divergence-free velocity bases defined on rectangles derived herein produce pointwise divergence-free flow fields. Hence the explicit imposition of continuity constraint is not necessary and the Galerkin finite element formulation for velocities does not involve the pressure. The divergence-free element of the previous study employed hermite serendipity cubic for interpolation of stream function, and it has been noted a possible discontinuity in variables along element interfaces. This deficiency can be removed by use of a hermite bicubic interpolated stream function, which requires at each element corners four degrees-of-freedom such as the unknown variable, its x- and y-derivatives and its cross derivative. Detailed derivations are presented for both solenoidal and irrotational bases from the hermite bicubic interpolated stream function. Numerical tests are performed on the lid-driven cavity flow, and results are compared with those from hermite serendipity cubics and a stabilized finite element method by Illinca et al[7].

  • PDF

Analysis of Steady Vortex Rings Using Contour Dynamics Method for the Stream Function

  • Choi, Yoon-Rak
    • 한국해양공학회지
    • /
    • 제34권2호
    • /
    • pp.89-96
    • /
    • 2020
  • In this study, the Norbury-Fraenkel family of vortex rings is analyzed using a contour dynamics method for the stream function, which significantly reduces the numerical burden in the calculation. The stream function is formulated as the integral along the contour of the vorticity core. The integration over the logarithmic-singular segment is evaluated analytically, and the positions of the nodal points of the contour are calculated directly. The shapes of the cores and the dividing stream surfaces are found based on the mean core radius. Compared with other studies, the proposed method is verified and found to be more efficient.

Hermite 유동함수법에 의한 정사각형 공동 내부의 자연대류 유동계산 (COMPUTATIONS OF NATURAL CONVECTION FLOW WITHIN A SQUARE CAVITY BY HERMITE STREAM FUNCTION METHOD)

  • 김진환
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.67-77
    • /
    • 2009
  • This paper is a continuation of a recent development on the Hermite-based divergence-free element method and deals with a non-isothermal fluid flow driven by the buoyancy force in a square cavity with temperature difference across the two sides. Two Hermite functions are considered for numerical computations in this paper. One is a cubic function and the other is a quartic function. The degrees-of-freedom of the cubic Hermite function are stream function and its first and second derivatives for the velocity field, and temperature and its first derivatives for the temperature field. The degrees-of-freedom of the quartic Hermite function include two second derivatives and one cross derivative of the stream function in addition to the degrees-of-freedom of the cubic stream function. This paper presents a brief review on the Hermite based divergence-free basis functions and its finite element formulations for the buoyancy driven flow. The present algorithm does not employ any upwinding or a stabilization term. However, numerical values and contour graphs for major flow variables showed good agreements with those by De Vahl Davis[6].