• Title/Summary/Keyword: Stream flow monitoring

Search Result 151, Processing Time 0.027 seconds

Impacts of Nitrate in Base Flow Discharge on Surface Water Quality (질산성 질소 기저유출이 지표수 수질에 미치는 영향)

  • Kim, Geonha;Lee, Hosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.105-109
    • /
    • 2009
  • It is a well known fact that baseflow discharge of rainfall runoff impacts on water quality of surface water significantly. In this paper, impacts of nitrate discharged as base flow on stream water quality were studied by using a software, PULSE from USGS to calculate monthly ground water discharge from hydrograph. We used water quality and flow rate data for Ghapcehon2 site in Daejeon city for year 2005 as well as ground water quality data in the watershed acquired from government agencies. Agricultural and forestry land use are dominant for upstream of Ghapcheon2 in the watershed. Base flow contributes about 85~95% of stream flows during spring and fall while 25~38% of stream flow was induced by base flow during summer and winter. Monthly nitrate loading discharged as base flow for Ghapcheon2 was estimated by using averaged nitrate concentration of groundwater in the watershed. Nitrate loading induced by base flow at Ghapcheon2 was estimated as 5.4 ton of $NO_{3}{^-}-N/km^{2}$, which is about 60% of nitrate loading of surface water, 9.2 ton of $NO_{3}{^-}-N/km^{2}$. Seasonal variation of nitrate concentration of base flow was estimated by dividing monthly nitrate loading by monthly base flow discharge. Nitrate concentration of groundwater was increasing from rainy season. From this study, it can be understood that ground water quality monitoring is important for the proper manage of surface water quality.

Distribution of Freshwater Organisms in the Pyeonggang Stream and Application Effects of Hydrothermal Energy on Variations in Water Temperature by Return Flow in a Stream Ecosystem

  • Dohun Lim;Yoonjin Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.185-199
    • /
    • 2023
  • This study aimed to predict the effects of water ecology on the supply of hydrothermal energy to model a housing complex in Eco Delta Smart Village in Busan. Based on the results, engineering measures were recommended to minimize problems due to possible temperature variations on the supply of hydrothermal energy from the river. The current distribution of fish, benthic macroinvertebrates, and phytoplankton in the Pyeonggang Stream was monitored to determine their effects on water ecology. In the research area, five species and three families of fish were observed. The dominant species was Lepomis macrochirus, and the subdominant species was Carassius auratus. Twenty-five species and 21 families of benthic macroinvertebrates were found. The distribution of aquatic insects was poor in this area. The dominant species were Chironomidae sp., Lymnaea auricularia, Appasus japonicus, and Caridina denticulata denticulata in February, May, July, and October. Dominant phytoplankton were Aulacoseira ambigua and Nitzschia palea in February and May. Microcystis sp. was dominant in July and October. The health of the ecology the Pyeonggang Stream was assessed as D (bad) according to the benthic macroinvertebrate index (BMI). Shifts in the location of the discharge point 150 m downstream from intake points and discharge through embedded rock layer after adding equal amounts of stream water as was taken at the beginning were suggested to minimize water temperature variations due to the application of hydrothermal energy. When the scenario (i.e., quantity of water intake and dilution water, 1,600 m3/d and water temp. difference ±5 ℃) was realized, variations in water temperature were assessed at -0.19 ℃ and 0.59 ℃ during cooling and heating, respectively, at a point 10 m downstream. Water temperatures recorded at -0.20 ℃ and 0.68 ℃ during cooling and heating, respectively, at a point 10 m upstream. All stream water temperatures after the application of hydrothermal energy recovered within 24 hours. Future work on the long-term monitoring of ecosystems is suggested, particularly to analyze the influence of the water environment on hydrothermal energy supply operations.

Hydrologic and Water Quality Monitoring from a Small-Scale Livestock Watershed (소규모 축산 유역의 수문/수질 모니터링)

  • Lee, Nam-Ho;Yoon, Kwang-Sik;Kim, Seong-Joon;Hong, Seong-Gu
    • Journal of Korean Society of Rural Planning
    • /
    • v.7 no.2 s.14
    • /
    • pp.13-25
    • /
    • 2001
  • Runoff and water quality was monitored from a watershed with small-scale livestock production farms. To evaluate pollution potential, land use, population, the size of livestock production of each farm, and livestock management method were surveyed. Climate and stream flow data were measured. Water samples were taken periodically for base flow conditions and some storm events. Pollutant loading was estimated by flow volume and concentrations of constituents. Delivery ratio of pollutant load was determined using estimated pollutant load.

  • PDF

A Study on Movement Characteristics Analysis of Debris Accumulation at Flood (홍수시 유송잡물 이동 특성 분석에 관한 연구)

  • Oh, Chae-Yeon;Jun, Kye-Won;Yoon, Young-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.707-710
    • /
    • 2008
  • Recently, a rivers' bridge that locate on among the mountains area is destroyed by debris accumulation and debris flow, because of frequent occurrence of typhoon and a localized torrential downpour. therefore a river make a part of dam's effect. Actually, this situation gives damages like inundation of a bridge upper stream area's. Generally, It the main cause of the occurrence route of the debris accumulation is that outbreaks of driftwood and debris flow because of landslide, that occurred by severe rain storm. Also, a lot of debris are occurred when big flood come up during long period at this time, this kind of debris accumulation remove to other place, in several, and specially, debris accumlation move to the place where the depth of water is deep and velocity is fast river center. According to these kind of fact, this research put in effect and analyze that movement characteristic's numerical simulations of debris accumulation at flood according to a domestic outside literature investigation, on-site monitoring survey and parameter scenario which comes out through the hydraulic modeling analysis.

  • PDF

Loads of Nitrogen and Phosphorus from the Agricultural Watershed in Central Korea

  • Cho, Jae-Young;Han, Kang-Wan;Choi, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.4
    • /
    • pp.254-257
    • /
    • 2000
  • Water quality monitoring network was established at the agricultural watershed located at the Namdae-chon watershed of Seolchon-myon, Muju-gun, Chollabuk-do, Korea which is 22,560 ha in size. Based on total amount of stream flow loads of nitrogen and phosphorus from the agricultural watershed were estimated. About 4.48 (1,011 ha), 7.02 (1,585 ha), and 86.82% (19,609 ha) of the site were used for paddy fields, upland fields, and forests, respectively. During the period of 6 months from May 1 to October 31, 1999, the total amounts of precipitation and stream flow were 993.2 mm and $148,533,000m^3$ respectively. The loads of agricultural non-point sources accrued by land use were 83,526 kg, 24,508 kg, 49,705 kg, and 215 kg for total-N, ammonia-N, nitrate-N, and total-P, respectively. Results showed that 23.4 and 0.1 % of the applied nitrogen and phosphorus fertilizers, respectively, were estimated to load into the streams as agricultural non-point sources.

  • PDF

Changes in Channel Geomorphology and Hydraulics by Submerged Spur Dikes at a Channelized Stream (정비된 하천에서 저수 수제에 의한 하도 지형과 수리 특성 변화)

  • Kim, Kiheung;Lee, Hyeongrae;Jung, Heareyn
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.1
    • /
    • pp.42-53
    • /
    • 2015
  • In order to assess the hydraulic effects of flow pattern changes and geomorphological evolution around spur dikes, this study carried out monitoring and numerical simulation on the changes of morphologic characteristics around spur dikes that settled in the bend of the Yeongcheon River. The study site spanned 190 m, and spur dikes were installed in March 2008. Monitoring of the site started in May 2008 and was completed in April 2014. When the water level was higher than the height of the spur dikes, the spur dikes extrude flow from the bank. Therefore, the spur dikes that were built to stabilize the channel have been effectively performing hydraulic functions. With the passing of time, the channel was stabilized and pools formed around the spur dike toes by local scouring. It was confirmed that spur dikes created various physical characteristics in the aspect of channel topography, with sediments deposits occurring between the spur dikes, while riffles and pools formed in the channel.

Investigation on Physical Habitat Condition and Fish Fauna in Dal Stream of Han River Basin (한강수계 달천의 어류상과 물리적 서식지 조건에 관한 연구)

  • Hur, Jun-Wook;Kang, Hyoeng-Sik;Jang, Min-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.564-571
    • /
    • 2011
  • In order to establish fundamental data for stream restoration and environmental flow, we investigated fish fauna, community and physical habitat conditions in the Dal Stream of Han River Basin. Field monitoring including fish sampling was conducted from September 2008 to October 2009. A total number of fish caught in the 5 sites was 2,080 representing 9 families 35 species, and 19 species (54.3%) including Acheilognathus koreensis and Iksookimia koreensis were Korean endemic species during the study period. The most frequently found species in number was pale chub (Zacco platypus, 25.7%, n = 632) followed by Coreoleuciscus splendidus (18.0%, n = 375) and Z. koreanus (13.0%, n = 272). The lower reach of Dal Stream was more abundance of species, high diversity, evenness and richness, and lower dominance index than those of the upper reach. According to the dendrogram established at 0.63 level of similarity rate, sampling stations were divided into 2 groups. Most of upper streams in Korea consist of riffles and runs that are repeatedly followed by another one. However, stream channelization and leveling have caused reduction of habitat diversity. Therefore, it is necessary to make an effort on stream rehabilitation with evaluation of physical habitat condition by indicator species in order to maintain biodiversity and perform ecological restoration.

Assessing Stream Vegetation Dynamics and Revetment Impact Using Time-Series RGB UAV Images and ResNeXt101 CNNs

  • Seung-Hwan Go;Kyeong-Soo Jeong;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • Small streams, despite their rich ecosystems, face challenges in vegetation assessment due to the limitations of traditional, time-consuming methods. This study presents a groundbreaking approach, combining unmanned aerial vehicles(UAVs), convolutional neural networks(CNNs), and the vegetation differential vegetation index (VDVI), to revolutionize both assessment and management of stream vegetation. Focusing on Idong Stream in South Korea (2.7 km long, 2.34 km2 basin area)with eight diverse revetment methods, we leveraged high-resolution RGB images captured by UAVs across five dates (July-December). These images trained a ResNeXt101 CNN model, achieving an impressive 89% accuracy in classifying vegetation cover(soil,water, and vegetation). This enabled detailed spatial and temporal analysis of vegetation distribution. Further, VDVI calculations on classified vegetation areas allowed assessment of vegetation vitality. Our key findings showcase the power of this approach:(a) TheCNN model generated highly accurate cover maps, facilitating precise monitoring of vegetation changes overtime and space. (b) August displayed the highest average VDVI(0.24), indicating peak vegetation growth crucial for stabilizing streambanks and resisting flow. (c) Different revetment methods impacted vegetation vitality. Fieldstone sections exhibited initial high vitality followed by decline due to leaf browning. Block-type sections and the control group showed a gradual decline after peak growth. Interestingly, the "H environment block" exhibited minimal change, suggesting potential benefits for specific ecological functions.(d) Despite initial differences, all sections converged in vegetation distribution trends after 15 years due to the influence of surrounding vegetation. This study demonstrates the immense potential of UAV-based remote sensing and CNNs for revolutionizing small-stream vegetation assessment and management. By providing high-resolution, temporally detailed data, this approach offers distinct advantages over traditional methods, ultimately benefiting both the environment and surrounding communities through informed decision-making for improved stream health and ecological conservation.

Estimation on the Physical Habitat Suitability of Benthic Macroinvertebrates in the Gapyeong Stream (가평천 저서성 대형무척추동물의 물리적 서식처 적합성 평가)

  • Kong, Dongsoo;Kim, Ah Reum
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.311-325
    • /
    • 2017
  • Habitat suitability index (HSI) of 17 benthic macroinvertebrate taxa, which were lotic insects of generic category except Potamanthidae in mayfly, was developed for three physical habitat factors (current velocity, water depth and substrate) based on an ecological monitoring in a Korean stream (Gapyeong). Weibull model was used as a probability density function to analyze the distribution of individual abundance related with physical factors, which showed it was so available. Number of species and total individual abundance increased along with the increase of current velocity and the mean diameter of substrate, and decreased along with the increase of water depth. Most taxa showed a clear preference for a fast current velocity, shallow water depth and coarse substrate except Ephemera, Potamanthidae (mayfly), and Plectrocnemia (caddisfly) which were rheophobic, potamophilic and lithophobious. Based on the canonical correspondence analysis, the relative importance of each factor was determined as follows: current velocity > substrate > water depth.

The measurement and evaluation of local scour at a bridge pier using the profiling scour monitoring system (프로파일링 세굴 모니터링 시스템을 이용한 교각 국부세굴 계측 및 평가)

  • Shin, Jong-Hyun;Park, Hyun-Il;Shin, Seung-Hyun;Park, Kyung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.38-47
    • /
    • 2009
  • Scour means the erosion of bed material by flow change when a bridge is constructed in a stream. Scour is one of the critical factors of a bridge failure. There are several methods for the monitoring of scour near bridge foundations; Sounding rods, Magnetic sliding collar System, Sonar system, underwater camera system and so on. In general, Sonar system is preferred due to its convenience and good accuracy. In this study, the new scour monitoring system was developed using profiling sonar sensor. The new system can measure a line profile of a seabed and has small size due to the effectively designed data logger. The performance of the new scour monitoring system was evaluated at a bridge pier in tidal environment. The measured local scour depths were discussed with the result of the empirical formulas; CSU, Froehlich, Laursen and Neill.

  • PDF