• Title/Summary/Keyword: Stream flow monitoring

Search Result 151, Processing Time 0.028 seconds

Use of Tributary Water Quality and Flowrate Monitoring Data for Effective Implementation of TMDL (수질오염총량관리제의 효율적인 시행을 위한 지류하천 수질.유량모니터링 자료의 활용)

  • Kim, Young-Il;Jeong, Woo-Hyeok;Kim, Hong-Su;Yi, Sang-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.119-125
    • /
    • 2012
  • The tributary water quality and flowrate monitoring result, which is fundamental data for the establishment of the water environmental policy, is used as very important data for the implementation of TMDL. This study introduced how to use the tributary water quality and flowrate monitoring data for the analysis of the watersheds, the satisfactory assessment of water quality standards in the watersheds, the selection of watersheds for the establishment of the implementation plan, and the selection of the tributary catchments for improving the water quality using a stream grouping method. According to the analytical results of tributary catchment using water quality and flowrate monitoring data of thirty-seven tributaries in the Geum-River watershed at Chungcheongnam-do, the value of flowrate in the tributaries, which is located in the middle-lower Geum-River watershed, was greater than the other areas and the concentration of the water pollutants regardless of water quality parameters in the tributaries at Nonsancheon catchment was relatively higher than the other areas. The problems, which have the determination of satisfaction of water quality standards and selection of target watersheds for establishment of the implementation plan regardless of the water quality of tributary in the watershed due to the water quality and flowrate monitoring results of the main river, were improved use of the results of tributary water quality and flowrate monitoring. Also, the tributary catchments for improving the water quality, according to stream grouping method based on the results of tributary water quality and flowrate monitoring, were selected. In the Geum-River watershed at Chungcheongnam-do, the tributary in the Nonsancheon, Byeongcheoncheon, Seokseongcheon, Jocheon catchments, which has a large flow and a high concentration of water pollutants, should be preferentially selected for improving the water quality of the tributary in accordance with the reduction of the source of pollution.

A Study on Evaluation Method for Piping Shell Mode Vibration (배관 Shell Mode 진동 평가방법에 대한 연구)

  • Chun, Chang-Bin;Park, Soo-Il;Chun, Hyong-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1285-1289
    • /
    • 2006
  • In a large diameter piping system, high frequency energy can produce excessive noise, high vibration, and failures of thermo-well, instrumentation, and attached small-bore piping. High frequency energy is generated by flow induced vibration like vortex shedding in orifices and valves. Once this energy is generated, amplification may occur from acoustical and/or structural resonances, resulting in high amplitude vibration and noise. At low frequencies, pipe vibration occurs laterally along the pipe's length, but at higher frequencies, the pipe shell wall vibrates radially across its cross-section. The simple beam analogy which is based on the beam mode vibration can not be applied to evaluate shell mode vibration. ASME OM3 recommends that the stress be measured directly by strain gauge and be evaluated according to the fatigue curves of the piping material. This Paper discusses the excitation and amplification mechanism relevant to high frequency energy generation in piping system, the monitoring method of the shell mode vibration in ASME OM3, the evaluation method generally used in the industry. Finally this paper presents the stress evaluation of the cavitating venturi down stream piping, where high frequency shell mode vibrations were observed during the operation.

  • PDF

Dog Activities Recognition System using Dog-centered Cropped Images (반려견에 초점을 맞춰 추출하는 영상 기반의 행동 탐지 시스템)

  • Othmane Atif;Jonguk Lee;Daihee Park;Yongwha Chung
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.615-617
    • /
    • 2023
  • In recent years, the growing popularity of dogs due to the benefits they bring their owners has contributed to the increase of the number of dogs raised. For owners, it is their responsibility to ensure their dogs' health and safety. However, it is challenging for them to continuously monitor their dogs' activities, which are important to understand and guarantee their wellbeing. In this work, we introduce a camera-based monitoring system to help owners automatically monitor their dogs' activities. The system receives sequences of RGB images and uses YOLOv7 to detect the dog presence, and then applies post-processing to perform dog-centered image cropping on each input sequence. The optical flow is extracted from each sequence, and both sequences of RGB and flow are input to a two-stream EfficientNet to extract their respective features. Finally, the features are concatenated, and a bi-directional LSTM is utilized to retrieve temporal features and recognize the activity. The experiments prove that our system achieves a good performance with the F-1 score exceeding 0.90 for all activities and reaching 0.963 on average.

Streamflow Monitoring of Rural Small Streams for Environmental Flows Supply from Irrigation Reservoir (농촌 소하천의 농어촌환경용수 공급을 위한 하천유량 모니터링)

  • Kim, Sang Min;Kim, Sung Jae;Kim, Yong Wan;Park, Tae Yang;Kim, Sung Min;Park, Ki Wook;Jang, Min Won
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.237-249
    • /
    • 2011
  • The purpose of this study was to monitor the streamflow of rural streams for investigating the status of stream depletion located downstream of irrigation reservoir. Bonghyun and Hi reservoirs area, located in Gyeongnam, Gosung-gun, Hi-myeon, were selected for study watersheds and streams. Streamflow monitoring were conducted 6 times during the paddy growing season of 2010 from May to October. Streamflow was measured for 18 stations downstream from two reservoirs with the interval of 300m to 500m, The amount of streamflow were highly dependent on the antecedent precipitation and irrigation amount. In most observation stations, streamflow was depleted when precipitation and irrigation were not provided. Pumping from stream for irrigation and water supply for factory and irrigation return flow were also factors on streamflow. Continuous monitoring for rural streams located in downstream of reservoirs are required to quantify the status of streamflow depletion and determine the amount of environmental flows.

Analysis of weighted usable area and estimation of optimum environmental flow based on growth stages of target species for improving fish habitat in regulated and non-regulated rivers (조절 및 비조절 하천의 어류 서식처 개선을 위한 성장 단계별 가중가용면적 분석 및 최적 환경생태유량 산정)

  • Jung, Sanghwa;Ji, Un;Kim, Kyu-ho;Jang, Eun-kyung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.811-822
    • /
    • 2019
  • Environmental flows in the downstream sections of Yongdam Dam, Wonju Stream Dam, and Hongcheon River were estimated with selected target fish species such as Nigra for the site of Yongdam Dam, Splendidus for the site of Wonju Stream Dam, and Signifer for the site of Hongcheon River by considering endangered and domestic species. Physical habitat analysis was performed to estimate environmental flows for the study sites by applying the Physical Habitat Simulation (PHABSIM) and RIVER2D which combined hydraulic and habitat models. Based on the monitored data for ecological environment, the Habitat Suitability Index (HSI) for the target species was estimated by applying the Instream Flow and Aquatic Systems Group (IFASG). In particular, based on the result of fish monitoring, the HSI for each stage of the growth for target species was analyzed. As a result, the Weighted Usable Area (WUA) was maximized at $4.9m^3/s$ of flow discharge during spawning, $5.8m^3/s$ during the period of juvenile, and $8.9m^3/s$ during the adult fish season at the downstream section of Yongdam Dam. The result of the Wonju Stream Dam showed an optimal environmental flow of $0.4m^3/s$, $1.0m^3/s$, and $1.5m^3/s$ during the period of spawning, juvenile, and adult. The habitat analysis for the site of Hongcheon River, which is a non-regulated stream, produced an optimum environmental flow of $5m^3/s$ in the spawning period, $4m^3/s$ in the juvenile stage and $6m^3/s$ in the adult stage.

Time-series Changes in Particle Size Characteristics of Suspended Sediment at the Seungchon and the Juksan Weir in the Yeongsan River (영산강 부유하중의 시계열적 입도 특성 변화: 승촌보, 죽산보를 중심으로)

  • Lim, Young Shin;Kim, Jin Kwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.1-20
    • /
    • 2019
  • In order to establish appropriate policy to control sediment-associated problems, it is necessary to identify the physical characteristics of the reservoir sediments in particulate form in the Yeongsan River. Two time-integrated suspended sediment samplers were installed at Seungchon and Juksan weir on the upper and middle Yeongsan River in July 2012. Reservoir sediment samples were obtained at monthly intervals until October 2014. During the monitoring period, a total of 38 sediment samples were obtained and analyzed. Seasonal trends of suspended sedimentation rates and grain size distributions were examined based on variations in precipitation and discharge fluctuations. Moreover, stream flow characteristics, which has a great influence on the physical characteristics of the river sediment, was analyzed using flow duration curve for the period 2003-2019 at Naju gauging station. Sedimentation rates during summer, when heavy rainfall was concentrated due to the monsoonal front and typhoon, were very high, indicating the positive relationship between sediment concentration and discharge. Particle size analysis of the collected sediment showed that coarse silt and very fine sand-sized sediment dominated most of the Seungchon weir sediment. On the other hand, medium silt-sized sediment dominated the downstream Juksan weir except for a few summer samples. These results implied that the physical characteristics of the suspended sediment are determined not only due to flow fluctuations, but also with regard to the antecedent rainfall conditions, hillslope-channel connectivity, and the supply of materials from various contributing regions. This information about flow characteristics and temporal variations in reservoir sediment can be used for safe management of the weir and discussing the issues on the dismantling of the weirs.

International and domestic research trends in longitudinal connectivity evaluations of aquatic ecosystems, and the applicability analysis of fish-based models (수생태계 종적 연결성 평가를 위한 국내외 연구 현황 및 어류기반 종적 연속성 평가모델 적용성 분석)

  • Kim, Ji Yoon;Kim, Jai-Gu;Bae, Dae-Yeul;Kim, Hye-Jin;Kim, Jeong-Eun;Lee, Ho-Seong;Lim, Jun-Young;An, Kwang-Guk
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.634-649
    • /
    • 2020
  • Recently, stream longitudinal connectivity has been a topic of investigation due to the frequent disconnections and the impact of aquatic ecosystems caused by the construction of small and medium-sized weirs and various artificial structures (fishways) directly influencing the stream ecosystem health. In this study, the international and domestic research trends of the longitudinal connectivity in aquatic ecosystems were evaluated and the applicability of fish-based longitudinal connectivity models used in developed countries was analyzed. For these purposes, we analyzed the current status of research on longitudinal connectivity and structural problems, fish monitoring methodology, monitoring approaches, longitudinal disconnectivity of fish movement, and biodiversity. In addition, we analyzed the current status and some technical limitations of physical habitat suitability evaluation, ecology-based water flow, eco-hydrological modeling for fish habitat connectivity, and the s/w program development for agent-based model. Numerous references, data, and various reports were examined to identify worldwide longitudinal stream connectivity evaluation models in European and non-European countries. The international approaches to longitudinal connectivity evaluations were categorized into five phases including 1) an approach integrating fish community and artificial structure surveys (two types input variables), 2) field monitoring approaches, 3) a stream geomorphological approach, 4) an artificial structure-based DB analytical approach, and 5) other approaches. the overall evaluation of survey methodologies and applicability for longitudinal stream connectivity suggested that the ICE model (Information sur la Continuite Ecologique) and the ICF model (Index de Connectivitat Fluvial), widely used in European countries, were appropriate for the application of longitudinal connectivity evaluations in Korean streams.

A Study on Comparison of Changes in Ecological Characteristics for Bulgwangcheon(stream) Close-to Nature Section (불광천 자연형 하천 정비구간의 생태적 특성 변화 비교 연구)

  • Park, Won-Zei;Lee, Kyong-Jae;Han, Bong-Ho;Jang, Jae-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.2
    • /
    • pp.112-129
    • /
    • 2012
  • The aim of this study was to provide basic data in managing the project that was carried out on Bulgwangcheon in a nature-friendly way to improve the conditions around the areas, which was brought to completion in 2002, based on changes in ecological characteristics. For this propose, this study examined documents related to the project, compared physical and enviromnental changes before and after the project was conducted and analyzed changes in the stream ecosystem. The result showed that in areas that effluent water was often observed, especially when it rained, the river wall was washed away and vegetation was found damaged. As for actual vegetation, this study compared planting coverage of each section of the research area and actual vegetation charts. The results indicated that Lespedeza spp., Aster koraiensis among mixed seeds that were planted in the reservoir path were almost swept away while Festuca arundinacea dominated the areas. Phragmites communis, Miscanthus sacchariflorns and Salix gracilistyla which had been planted in a small number were also almost washed out though a small number of them were left to form a colony. After examining the topography and structure of the plant community, this study found that areas where mixed seed were planted had changed into two types of vegetation: First type of area is dominated by P and R which are usually raised in apron with abundant floating particles. The second type of area is dominated by dry gramineous plant such as F and A. Areas around low flow channel where Phragmites communis, Miscanthus sacchariflorus and Salix gracilistyla planting construction method is applied was washed away with the width of low flow channel reduced. Though P, M and S formed a small community in some areas around the low flow area, they were in small number and in composition of simple plant species. Two ways were suggested in this study to manage the stream in an ecological way. First, adequate revetment construction methods should be applied by monitoring the flow of the stream as well as considering the flood control of urban streams. Second, target vegetation communities that are suitable for the environment of the stream should be chosen and be plantedconstantly with high density. At the same time, ornamental native plants shouldn't be planted as they have been and disturbing vegetation should be removed.

Application of Urban Hydrologic Monitoring System for Urban Runoff Analysis (도시유출해석을 위한 도시수문 모니터링 기법 적용)

  • Seo, Kyu-Woo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.2 s.17
    • /
    • pp.37-44
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of urban river basin of Busan local. In this study, process various hydrological data and basin details data which is collected through basin basis data, hydrological monitoring system(EMS-DEU) and automatic water level equipment(AWS-DEU) for urban flood disaster prevention and use as basin input data of ILLUDAS, SWMM and HEC-HMS in order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed detention pond(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

Dataset of Long-term Investigation on Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (II))

  • Lee, Chanjoo;Kim, Dong Gu;Hwang, Seung-Yong;Kim, Yongjeon;Jeong, Sangjun;Kim, Sinae;Cho, Hyeongjin
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.34-48
    • /
    • 2019
  • Naeseong Stream is a natural sand-bed river that flows through mountainous and cultivated area in northern part of Gyeongbuk province. It had maintained its inherent landscape characterized by white sandbars before 2010s. However, since then changes occurred, which include construction of Yeongju Dam and the extensive vegetation development around 2015. In this study, long-term monitoring was carried out on Naeseong Stream to analyze these changes objectively. This paper aims to provide a dataset of the investigation on channel morphology and vegetation for the period 2012-2018. Methods of investigation include drone/terrestrial photography, LiDAR aerial survey and on-site fieldwork. The main findings are as follows. Vegetation development in the channel of Naeseong Stream began around 1987. Before 2013 it occurred along the downstream reach and since then in the entire reach. Some of the sites where riverbed is covered with vegetation during 2014~2015 were rejuvenated to bare bars due to the floods afterwards, but woody vegetation was established in many sites. Bed changes occurred due to deposition of sediment on the vegetated surfaces. Though Naeseong Stream has maintained its substantial sand-bed characteristics, there has been a slight tendency in bed material coarsening. Riverbed degradation at the thalweg was observed in the surveyed cross sections. Considering all the results together with the hydrological characteristics mentioned in the precedent paper (I), it is thought that the change in vegetation and landscape along Naeseong Stream was mainly due to decrease of flow. The effect of Yeongju Dam on the change of the riverbed degradation was briefly discussed as well.