• 제목/요약/키워드: Strapdown 관성항법장치

검색결과 18건 처리시간 0.021초

적응형 시간지연 보상을 통한 관성항법장치 급속초기정렬기법 (Rapid Initial Alignment Method of Inertial Navigation System Using Adaptive Time Delay Compensation)

  • 이형섭
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.433-439
    • /
    • 2018
  • In this paper, a SDINS(strapdown inertial navigation system) rapid initial alignment technique with adaptive time delay compensation is proposed. The proposed method consists of two steps. In first step, misalignment and data latency are estimated by conducting pre-transfer alignment. Then, hybrid alignment is designed to rapidly find the misalignment changes induced by pyro-shock. To improve the performance of hybrid alignment, adaptive time delay compensation method is suggested. We verify the performance improvement of the proposed alignment scheme comparing with the conventional transfer alignment method by van test. The test result shows that the proposed alignment technique improves alignment performance.

적응필터를 사용한 수직상태 SDINS 전달정렬 (SDINS Transfer Alignment using Adaptive Filter for Vertical Launcher)

  • 박찬주;이상정
    • 한국군사과학기술학회지
    • /
    • 제10권1호
    • /
    • pp.14-21
    • /
    • 2007
  • This paper proposes SDINS(strapdown inertial navigation system) transfer alignment method for vertical launcher using an adaptive filter in the ship. First, the velocity and attitude matching transfer alignment method is designed to align SDINS for vertical launcher. Second, the adaptive filter is employed to estimate measurement noise variance in real time using the residual of measurements. Because it is difficult to decide measurement noise variance when noise properties of the ship SDINS are changed. To verify its performance, it is compared with the EKF(Extended Kalman filter) using uncorrect measurement variance. The monte carlo simulation results show that proposed method is more effective in estimating attitude angle than EKF.

관성측정기를 이용한 항공기용 위성추적 안테나의 지향각 결정 (LOS Determination Using INS for an Aircraft Mounted Satellite Tracking Antenna)

  • 정하형;김충일;유준
    • 전자공학회논문지SC
    • /
    • 제49권3호
    • /
    • pp.12-18
    • /
    • 2012
  • 본 논문에서는 항공기에 장착된 안테나가 정지 위성을 향하도록 관성측정기를 사용하여 지향각을 계산하는 방식을 제시한다. 대상 시스템에서 안테나는 항공기 앞에 위치하고 있고 몸체 유연성을 고려하기 위해 관성측정기를 도입하며, 항공기 중심부 GPS/INS와 안테나부 관성항법장치(INS) 사이의 위치와 속도 차이를 활용하여 스트랩다운 INS 표류 오차를 억제하기 위한 칼만필터를 설계한다.

가속도계 신호 처리 오차의 관성항법장치 영향 분석 (Effects of Accelerometer Signal Processing Errors on Inertial Navigation Systems)

  • 성창기;이태규;이정신;박재용
    • 한국군사과학기술학회지
    • /
    • 제9권4호
    • /
    • pp.71-80
    • /
    • 2006
  • Strapdown Inertial navigation systems consist of an inertial sensor assembly(ISA), electronic modules to process sensor data, and a navigation computer to calculate attitude, velocity and position. In the ISA, most gryoscopes such as RLGs and FOGs, have digital output, but typical accelerometers use current as an analog output. For a high precision inertial navigation system, sufficient stability and resolution of the accelerometer board converting the analog accelerometer output into digital data needs to be guaranteed. To achieve this precision, the asymmetric error and A/D reset scale error of the accelerometer board must be properly compensated. If the relation between the acceleration error and the errors of boards are exactly known, the compensation and estimation techniques for the errors may be well developed. However, the A/D Reset scale error consists of a pulse-train type term with a period inversely proportional to an input acceleration additional to a proportional term, which makes it difficult to estimate. In this paper, the effects on the acceleration output for auto-pilot situations and the effects of A/D reset scale errors during horizontal alignment are qualitatively analyzed. The result can be applied to the development of the real-time compensation technique for A/D reset scale error and the derivation of the design parameters for accelerometer board.

링 레이저 자이로 기반 회전형 관성항법장치를 위한 6-자세 자이로 바이어스 교정 방법 (The Six-Position Calibration Technique of Gyro Bias for Rotational Inertial Navigation System Based on Ring Laser Gyroscope)

  • 유해성;김천중;이인섭;오주현;성창기;이상정
    • 한국군사과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.189-196
    • /
    • 2019
  • The inertial sensor errors in SDINS(Strapdown Inertial Navigation System) can be compensated by rotating the inertial measurement unit and it is called RINS(Rotational Inertial Navigation System). It is assumed that the error of the inertial sensor in RINS is a static bias. However, the error of the inertial sensor actually developed and produced is not a static bias due to the change of the temperature applied to the sensor and the influence of the earth's gravity acceleration. In this paper, we propose a six-position gyro bias calibration method to evaluate the gyro bias required for RINS and present the test results of applying it to a ring laser gyro inertial navigation system under development.

동조자이로스코프의 기계부 오차 해석 및 동적밸런싱 (Error Aalysis of Mechanical Parts and Dynamic Balancing in A Dynamically Tuned Gyroscope)

  • J.O. Young;C.G. Ahn;Lee, J.M.
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.13-22
    • /
    • 1997
  • Strapdown inertial navigation system(SDINS) is a navigational instruments necessary to guide and con- trol a free vehicle. In this study, an error analysis of mechanical parts is carried out for manufacturing a dynamically tuned gyroscope. The errors usually come from the tolerance in machining and assembly. In the error analysis, a criterion to be considered during designing and manufacturing is proposed by quanti- tatively analyzing the effect of DTG performance by tolerances. The theory of dynamic balancing is deduced and unbalance is reduced through experiment.

  • PDF

큰 초기 자세 오차를 가진 관성항법장치의 운항중 정렬을 위한 비선형 필터 연구 (Nonlinear Filtering Approaches to In-flight Alignment of SDINS with Large Initial Attitude Error)

  • 유해성;최상욱;이상정
    • 제어로봇시스템학회논문지
    • /
    • 제20권4호
    • /
    • pp.468-473
    • /
    • 2014
  • This paper describes the in-flight alignment of SDINS (Strapdown Inertial Navigation Systems) using an EKF (Extended Kalman Filter) and a UKF (Unscented Kalam Filter), which allow large initial attitude error uncertainty. Regardless of the inertial sensors, there are nonlinear error dynamics of SDINS in cases of large initial attitude errors. A UKF that is one of the nonlinear filtering approaches for IFA (In-Flight Alignment) are used to estimate the attitude errors. Even though the EKF linearized model makes velocity errors when predicting incorrectly in case of large attitude errors, a UKF can represent correctly the velocity errors variations of attitude errors with nonlinear attitude error components. Simulation results and analyses show that a UKF works well to handle large initial attitude errors of SDINS and the alignment error attitude estimation performance are quite improved.

항공기 Run-Up 진동 환경에서의 관성항법장치 초기 정렬 방법 설계 및 평가 (Design and Evaluation of INS Initial Alignment under Vibration Environment of Aircraft Run-up)

  • 유해성;이인섭;오주현;김천중;박흥원
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.691-698
    • /
    • 2015
  • Inertial Navigation Systems (INS) are widely used as the main navigation device for aircraft. To get the initial attitude, the INS requires the initial alignment before navigation starts. An aircraft also needs an engine test procedure that causes some vibrations before flight. An INS can't be aligned in a vibration environment so the initial alignment is performed before the aircraft engine test. Therefore, the initial alignment time of an INS has been a major factor in limiting an aircraft's takeoff response time. In this paper, we designed an initial alignment algorithm that can be executed even in disturbances such as aircraft run-up. We demonstrated verification of the algorithm that is embedded on the real INS and testing methods to evaluate the alignment of the INS. We also analyzed the test results of the proposed initial alignment algorithm that is performed during a real aircraft run-up.