• 제목/요약/키워드: Strain-stress Curve

검색결과 634건 처리시간 0.024초

Bi-2223산화물 복합 초전도 테이프의 기계적 특성 평가 (Evaluation of Mechanical Properties in Bi-2223 Composite Superconducting Tapes)

  • 신형섭;최수용
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제3권2호
    • /
    • pp.1-4
    • /
    • 2001
  • For the practical use of a superconducting wire to magnet application, it is important to assess the Young modulus and other mechanical properties of HTS tapes. In order to establish a test method of mechanical properties for oxide composite superconductors. tensile tests of Bi-2223 multi- filamentary tapes were carried out at room temperature, as an activity of the International round robin test proposed by the committee of VAMAS/TWA 16-Subrgroup. The tapes consisting of mutli-filamentary showed a three stage tensile behavior. At the initial stage of the stress-streain curve. The elastic deformation existed in a quite nattrow strain region. But the plastic deformation was observed in a wide strain region due to the platic flow of the Ag alloy matrix. The results of RRT were also reported and discussed.

  • PDF

자기진단 CPGFRP의 파괴예측기능 평가를 위한 콘크리트 적용실험 (Evaluation of Fracture Detection Function for the Concrete by Self-Diagnosis CPGFRP)

  • 최현수;박진섭;정민수;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문 발표회
    • /
    • pp.27-31
    • /
    • 2003
  • To maintain serviceability of concrete structure more than proper it is necessary not only predict service life through periodical monitor but also need monitoring system to recognize optimal time and method for repair. Recently, CPGFRP, replacing some GFRP with CF, is developed and used for monitoring concrete fraction. But dramatic resistance change of CPGFRP is showed below 0.5% strain and it is not small strain in terms of monitoring micro crack in concrete. In other word, monitoring with CF is not suitable in low stress hut hight stress. In this study, we accessed applicable possibility and reliability of CPGFRP composite as monitoring sense that is proved very sensitive to stress through domestic and oversea previous study. CPGFRP composite plays a role in specimen like steel and increases flexural strength. CPGFRP composite shows resistance increasement in micro crack. In particular, CPUFRP is more sensitive than strangage in low stress. Resistance change ratio curve is very similar to strain curve so sensitivity and reliability is very excellent to monitor concrete fracture.

  • PDF

자기진단 CPGFRP의 파괴예측기능 평가를 위한 콘크리트 적용실험 (Evaluation of Fracture Detection Function for the Concrete by Self-Diagnosis CPGFRP)

  • 최현수;박진섭;정민수;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.27-31
    • /
    • 2003
  • To maintain serviceability of concrete structure more than proper it is necessary not only predict service life through periodical monitor but also need monitoring system to recognize optimal time and method for repair. Recently, CPGFRP, replacing some GFRP with CF, is developed and used for monitoring concrete fraction. But dramatic resistance change of CPGFRP is showed below 0.5% strain and it is not small strain in terms of monitoring micro crack in concrete. In other word, monitoring with CF is not suitable in low stress but hight stress. In this study, we accessed applicable possibility and reliability of CPGFRP composite as monitoring sense that is proved very sensitive to stress through domestic and oversea previous study. CPGFRP composite plays a role in specimen like steel and increases flexural strength. CPGFRP composite shows resistance increasement in micro crack. In particular, CPGFRP is more sensitive than strangage in low stress. Resistance change ratio curve is very similar to strain curve so sensitivity and reliability is very excellent to monitor concrete fracture.

  • PDF

화재에 의한 지하공동구의 온도 및 응력해석 (Temperature and Stress Analysis of Box Culvert in Fire)

  • 김현준;임초롱;유현경;정철헌
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.31-44
    • /
    • 2011
  • This paper has presented a finite element analysis of structural behaviour of box culvert during and after fires. The fire tests were carried out in a furnace on RC slabs using the ISO 834 standard fire curve. The load capacity after cooling of the RC slab that was not loaded during the fire tests was evaluated by means of additional 3 points bending tests. In the past, stress-strain models of concrete under fire loading have been proposed by several researchers. Comparisons are made with the load-displacement relations of RC slabs after fire loading using the existing stress-strain models with temperature, such as Schneider, EUROCODE 2, Lie, Shi and Nan model. By comparing the load-displacement relations, Lie model was found to result in a maximum load about 2.0% higher than that of test. Based on the fire test results of RC slabs, this paper presents an extensive analytical study on the fire response of box culvert during and after fires.

표준압밀시험에 의한 점토의 초기탄성계수 산정 (The Estimation of Initial Elastic Modulus of Clay by Standard Consolidation Test)

  • 권병해;임성훈
    • 한국농공학회논문집
    • /
    • 제66권1호
    • /
    • pp.15-24
    • /
    • 2024
  • Unlike artificially created homogeneous materials, the process of calculating the elastic modulus of natural soil involves the possibility of errors. Because the stress-strain behavior of soil is nonlinear, the secant modulus of elasticity is often used based on 1/2 of the stress at failure. Since soil has the property of changing its elastic modulus depending on the confining pressure, numerical analysis models that analyze its behavior inevitably include complex elements. The hyperbolic model, which relatively accurately simulates the behavior immediately after loading in soft ground, assumes that the stress-strain curve of the consolidated undrained triaxial test is hyperbolic and requires the slope of the tangent line at the starting point. However, the slope of the initial tangent in the stress-strain curve obtained from an actual triaxial test is difficult to have regularity according to changes in confining pressure. Additionally, due to the characteristics of a hyperbola, even small changes in related factors cause large changes in the hyperbola. Therefore, there is a lot of randomness in the process of calculating model parameters from the triaxial test results, which causes large differences in the results. Therefore, the method of calculating the initial elastic modulus by the consolidation test presented in this study is also used to verify the method by the triaxial test. It can be applied. However, since this study was applied to only one sample showing typical consolidation characteristics, it is necessary to check samples with various physical properties in the future.

반복하중을 받는 콘크리트 막요소의 응력-변형률 관계 (Stress-Strain Relationship of Concrete Membrane Elements Subjected to Reversed Cyclic Loading)

  • 이정윤
    • 한국공간구조학회논문집
    • /
    • 제1권2호
    • /
    • pp.93-100
    • /
    • 2001
  • A stress-strain relationship for reinforced concrete membrane elements subjected to reversed cyclic loading is quite different to that of concrete cylinder subjected to uniaxial compression. The compressive strength of cracked concrete membrane elements is reduced by cracking due to tension in the perpendicular direction. Based on the three reinforced concrete panel tests, a softened stress-strain curve of concrete subjected to reversed cyclic loading is proposed. The proposed model consists of seven stages in the compressive zones and six stages in the tensile zones. The proposed model is verified by comparing to the test results.

  • PDF

고온 구조물의 한계응력강도 결정을 위한 크리프 일-시간 관계식의 유용성 (Usefulness of Creep Work-Time ]Relation for Determining Stress Intensity Limit of High-Temperature Components)

  • 김우곤;이경용;류우석
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.750-757
    • /
    • 2003
  • In order to determine creep stress intensity limit of high-temperature components, the usefulness of the creep work and time equation, defined as W$\_$c/t$\^$p/ = B(where W$\_$c/ = $\sigma$$\varepsilon$ is the total creep work done during creep, and p and B are constants), was investigated using the experimental data. For this Purpose, the creep tests for generating 1.0% strain for commercial type i16 stainless steel were conducted with different stresses; 160 MPa, 150 MPa, 145 MPa, 140 MPa and 135 MPa at 593$^{\circ}C$. The plots of log W$\_$c/ - log t showed a good linear relation up to 10$\^$5/ hr, and the results of the creep work-time relation for p, B and stress intensity values showed good agreement to those of isochronous stress-strain curves (ISSC) presented in ASME BPV NH. The relation can be simply obtained with only several short-term 1% strain data without ISSC which can be obtained by long-term creep data. Particularly, this relation is useful in estimating stress intensity limit for new and emerging class of high-temperature creeping materials.

응력 삼축성을 고려한 원자로 내부구조물 배플포머 집합체의 연성저하 평가 (Ductility Degradation Assessment of Baffle Former Assembly Considering the Stress Triaxiality Effect)

  • 김종성;박정순;강성식
    • 한국압력기기공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.50-57
    • /
    • 2016
  • The study presents structural integrity assessment of ductility degradation of a baffle former assembly by performing finite element analysis considering real loading conditions and stress triaxiality. Variations of fracture strain curves of type 304 austenitic stainless steel with stress triaxiality are derived based on the previous study results. Temperature distributions during normal operation such as heat-up, steady state, and cool-down are calculated via finite element temperature analysis considering gamma heating and heat convection with reactor coolant. Variations of stress and strain state during long operation period are also calculated by performing sequentially coupled temperature-stress analysis. Fracture strain is derived by using the fracture curve and the stress triaxility. Finally, variations of ductility degradation damage indicator with the fracture strain and the equivalent inelastic strain are investigated. It is found that maximum value of the ductility degradation damage index continuously increases and becomes 0.4877 at 40 EFPYs. Also, the maximum value occurs at top and middle inner parts of the baffle former assembly before and after 20 EFPYs, respectively.

복합재료에 의하여 구속된 콘크리트 기둥의 응력-변형률 관계에 대한 실험적 연구 (An Experimental Study on the Stress-Strain Relationship of Concrete Columns Confined with Composite Materials)

  • 오영준;황현복;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.194-197
    • /
    • 2003
  • The stress-strain curve of concrete confined with both lateral ties and carbon fiber sheet(CFS) is different to that of concrete confined with only lateral ties or CFS. The objective of this study is to investigate the stress-strain relation of reinforced concrete columns confined by composite material. The main variable of the specimens was the content rate of lateral ties to CFS. In the test a total 24 rectangular specimens, which are all 148$\times$148$\times$300mm size. The test results indicated that while the compressive strength of specimens confined with both lateral ties and CFS increased proportionally to the aided amount of two materials, the maximum strain of specimens depended on the larger strain of lateral ties or CFS.

  • PDF

탄소섬유쉬트와 나선형철근으로 동시에 구속된 콘크리트의 응력-변형률 관계에 대한 실험적 연구 (An Experimental Study on the Stress-Strain Relationship of Concrete Confined with Spiral & Carbon Fiber Sheets)

  • 정훈식;오영준;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.537-542
    • /
    • 2003
  • The stress-strain curve of concrete confined with both spiral and carbon fiber sheet(CFS) is different to that of concrete confined with only spiral or CFS. The objective of this study is to investigate the stress-strain relation of concrete confined by composite material. In this study, 24 concrete cylinders were tested. The main variable of the cylinders was the content rate of spiral to CFS. The test results indicated that while the compressive strength of cylinder confined with both spiral and CFS increased proportionally to the aided amount of two materials, the maximum strain of cylinder depended on the larger strain of spiral or CFS.

  • PDF