• Title/Summary/Keyword: Strain relaxation

Search Result 234, Processing Time 0.025 seconds

Fatigue Life Estimation of Welding Details by Using a Notch Strain Approach (노치변형률법을 적용한 용접구조상세의 피로수명평가)

  • Han, Jeong-Woo;Han, Seung-Ho;Shin, Byung-Chun;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.977-985
    • /
    • 2004
  • An evaluation of fatigue life of welded components is complicated due to various geometrically complex welding details and stress raisers in vicinity of weld beads, ego under cuts, overlaps and blow holes. These factors have a considerable influence on the fatigue strength of welded joints, as well as the welding residual stress which is relaxed depending on the distribution of local stress at the front of the stress raisers. To reasonably evaluate fatigue life, the effect of geometries and welding residual stress should be taken into account. The several methods based on the notch strain approach have been proposed in order to accomplish this. These methods, however, result in differences between analytical and experimental results due to discrepancies in estimated amount of relaxed welding residual stress present. In this paper, an approach that involves the use of a modified notch strain approach considering geometrical effects and a residual stress relaxation model based on experimental results was proposed. The fatigue life for five types of representative welding details, ego cruciform, cover plate, longitudinal stiffener, gusset and side attachment joint, are evaluated using this method.

The effect of rotation on piezo-thermoelastic medium using different theories

  • Othman, Mohamed I.A.;Ahmed, Ethar A.A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.649-665
    • /
    • 2015
  • The present paper attempts to investigate the propagation of plane waves in generalized piezo-thermoelastic medium under the effect of rotation. The normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress and the strain components. Comparisons are made with the results predicted by different theories (Coupled theory, Lord-Schulman, Green-Lindsay) in the absence and presence of rotation.

A Study on Numerical Analysis of Flexible Pavements under Moving Vehicular Loads (차량의 이동하중을 고려한 연성포장의 수치해석 기법 연구)

  • Park, Seoksoon;Kim, Nakseok
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.206-219
    • /
    • 2011
  • The important elements in pavement design criteria are the stress and strain distributions. To obtain reasonable stress and strain distribution, tire contact area and tire pressures are very important. This study presents a viscoelastic characterization of flexible pavement subjected to moving loads. During the test, both longitudinal and lateral strains were measured at the bottom of asphalt layers and in-situ measurements were compared with the results of numerical analysis. A 3-dimension finite element model was used to simulate each test section and a step loading approximation has been adopted to analyze the effect of a moving vehicle on pavement behaviors. For viscoelastic analysis, relaxation moduli, E(t), of asphalt mixtures were obtained from laboratory test. Field responses reveal the strain anisotropy (i.e., discrepancy between longitudinal and lateral strains), and the amplitude of strain normally decreases as the vehicle speed increases. In most cases, lateral strain was smaller than longitudinal strain, and strain reduction was more significant in lateral direction.

Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading (저사이클 피로하중을 받는 316L 스테인리스강의 피로수명 분석 및 예측)

  • Oh, Hyeong;Myung, NohJun;Choi, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1027-1035
    • /
    • 2016
  • In this study, a strain-controlled fatigue test of widely-used 316L stainless steel with excellent corrosion resistance and mechanical properties was conducted, in order to assess its fatigue life. Low cycle fatigue behaviors were analyzed at room temperature, as a function of the strain amplitude and strain ratio. The material was hardened during the initial few cycles, and then was softened during the long post period, until failure occurred. The fatigue life decreased with increasing strain amplitude. Masing behavior in the hysteresis loop was shown under the low strain amplitude, whereas the high strain amplitude caused non-Masing behavior and reduced the mean stress. Low cycle fatigue life prediction based on the cyclic plastic energy dissipation theory, considering Masing and non-Masing effects, showed a good correlation with the experimental results.

Fatigue Life Evaluation of Welded Joints by a Strain-life Approach Using Hardness and Tensile Strength

  • Goo Byeong-Choon;Yang Seung-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.42-50
    • /
    • 2006
  • To evaluate the fatigue lifetime of structures, it is necessary to identify the values of parameters through tests. From the viewpoint of time and cost it is difficult for engineers to get the necessary data through tests. In this study, we surveyed literature and proposed a procedure to identify the fatigue parameters expressed with the Brinell hardness and elastic modulus. After obtaining stress concentration factors by finite element analysis, we calculated fatigue notch factors using Peterson's formula. Taking into account the welding residual stress, which was also obtained by finite element analysis, we evaluated the fatigue lifetime of four kinds of welded joints using the proposed approach. The estimated results are in a good agreement with the experimental results.

A Study on the Mechanical Behavior of Welded Parts in Thick Plate during Post Welding Heat Treatment (厚板熔接部의 應力除去 熱處理時의 力學的 擧動에 關한 硏究)

  • 방한서
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.103-111
    • /
    • 1993
  • Recently, several high-tensile steels(e.g. 80kg and above, $2^{1/4}Cr$-1Mo)having good quality to high temperature and pressure-resistance are widely used to construct petroleum-plant and pressure vessel of heat or nuclear-power plant. However, in the steels, reheating crack at grain boundaries of the heat affected zone(HAZ) occures during post welding heat treatment(PWHT)to remove welding residual stress. In order to study theoretically the characteristics of reheating crack created by PWHT, the computer program of three-dimensional thermal-elasto-plasto-creep analysis based on finite element method are developed, and then the mechanical behavior(history of creep strain accumulation and stress relaxation, etc)of welded join in thick plate during PWTH is clarified by the numerical results.

  • PDF

A Study on Non-linear Behavior in Welded Structures by Mechanical Stress Release Method (기계적 응력 완화법에 의한 용접구조물의 비선형 거동에 관한 연구)

  • 김정현;장경복;윤훈성;강성수;조상명
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.66-71
    • /
    • 2003
  • The release of residual stress by mechanical loading and unloading is often performed in the fabrication of box structure fur steel bridge. The proper degree of loading and unloading is significant at release method of residual stress by mechanical loading because that degree is changed by material and geometric shape of welded structure. Therefore, the simulation model that could exactly analyze the release of residual stress by mechanical loading is to be necessary. In this study, the non-linear behavior of weldments under external loading and unloading, such as the decrease and increase of structure stiffness, was investigated by monitoring of nominal stress and strain. Tensile loading and unloading test and the proper degree of stress relaxation was measured by sectioning technique using strain gauge. Analysis model that is indispensable for the effective application of MSR method was established on the basis of test and measurement result.