• 제목/요약/키워드: Strain rate distribution

검색결과 180건 처리시간 0.023초

가열냉각방법에 의한 마그네슘합금의 판재성형성 개선 (Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method)

  • 강대민
    • 소성∙가공
    • /
    • 제14권7호
    • /
    • pp.607-612
    • /
    • 2005
  • In this paper, warm deep drawing process with local heating and cooling technique was attempted to improve the formability of AZ31 magnesium alloy which is impossibly to form by conventional methods at room temperature by finite element method and experiment. For FE analysis, in first model with considering heat transfer, both die and blankholder were heated to 573K while the punch was kept at room temperature by cooling water. Also distribution of thickness and von Mises stress at room temperature and 498k for warm deep drawing were compared by FEM. Uniaxial tension tests at elevated temperature were done in order to obtain the temperature dependence of material constant under temperature of $293K\~573K$ and cross head velocity of $5\~500mm/min$. The phenomenological model for warm deep drawing process in this work was based on the hardening law and power law strain rate dependency. Deep drawing experiment were conducted at temperatures of room temperature, 373K, 423K, 473K, 498K, 523K, and 573K for the blank and deep drawing tools(holder and die) and at a punch speed of 10mm/min.

LNG차량용 연료탱크의 지지시스템 구조해석에 관한 연구 (A Study on the Structural Analysis of the Supporting System for LNG Vehicle Fuel Tank)

  • 윤상국;김동혁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.841-846
    • /
    • 2008
  • Recently the LNG(liquified natural gas) public buses have been introduced to prevent the air pollution in metropolitan areas. As the LNG temperature in fuel tank is as low as $-162^{\circ}C$. the thermal and structural effects of tank components need to be studied for safe introduction in the market. Especially the support system of LNG fuel tank in vehicle, which has connected with inside and outside of tanks, should put attention to reduce the structural stress due to cryogenic temperature and to restrict the heat flux from ambient. There are two supporting systems in the tank, that one is connected between inside and outside tanks by welding, and the other is the inserted support system which is a cylindrical SUS bar inserted in a hole of the supporting plate. In this study the temperature distribution and thermal stress of the inserted support system were evaluated by using the utility program as ANSYS. The results showed that the rate of heat transfer to inner tank through this support system was quite small due to limited contact of support bar with plate. but the thermal stress of support plate was obtained beyond the limited tensile value of SUS304. The cautious design for the support plate part, therefore, should be given to make the safe support system of LNG vehicle fuel tank.

연속주조법에 의한 Sn-38%Pb 공정합금의 초소성특성 (A Study on the Superplastic Characteristics of Sn-38%Pb Eutectic Alloy Produced by Continuous Casting Process)

  • 송태석;조형호;최재하;지태구;김명한
    • 한국주조공학회지
    • /
    • 제17권3호
    • /
    • pp.252-257
    • /
    • 1997
  • The 8 mm dia: Sn-38%Pb eutectic alloy rods were produced by use of the horizontal continuous casting process with the heated mold and chill cast process. The cast rods were rolled into 2.0${\sim}$0.5 mm thick plates and structural and mechanical properties were examined. The results revealed that the plates produced by the continuous casting process with the heated mold show much higher superplasticity at ambient temperature (1550% elongation at 0.5mm thick plate and 0.5mm/min strain rate) than the plates procuced by chill cast process (630% elongation). Such a high superplasticity of the continuous cast plates is due to the high-quality plates free from any inside and surface defects with fine and uniform distribution of eutectic phases.

  • PDF

Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.431-454
    • /
    • 2016
  • In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam model reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) with initial geometrical imperfection under uniformly distributed load using finite element method (FEM) is investigated. The governing equations of equilibrium are derived by the Hamilton's principle and von Karman type nonlinear strain-displacement relationships are employed. Also the influences of various loadings, amplitude of the waviness, UD, USFG, and SFG distributions of carbon nanotube (CNT) and different boundary conditions on the dimensionless transverse displacements and nonlinear frequency ratio are presented. It is seen that with increasing load, the displacement of USFG beam under force loads is more than for the other states. Moreover it can be seen that the nonlinear to linear natural frequency ratio decreases with increasing aspect ratio (h/L) for UD, USFG and SFG beam. Also, it is shown that at the specified value of (h/L), the natural frequency ratio increases with the increasing the values amplitude of waviness while the dimensionless nonlinear to linear maximum deflection decreases. Moreover, with considering the amplitude of waviness, the stiffness of Euler-Bernoulli beam model reinforced by FG-CNT increases. It is concluded that the R parameter increases with increasing of volume fraction while the rate of this parameter decreases. Thus one can be obtained the optimum value of FG-CNT volume fraction to prevent from resonance phenomenon.

Ti 합금 형단조에서의 소성 해석 및 전단 밴드 분석 (A Numerical Analysis for Plastic Deformation of a Ti Alloy and a study for Shear Band Analysis)

  • 윤수진;손영일;은일상
    • 한국추진공학회지
    • /
    • 제4권1호
    • /
    • pp.1-12
    • /
    • 2000
  • 유도탄의 성능 향상을 위해 추진기관의 경량화가 요구되고 있으며 연소관 모타 마개의 경우, Ti 합금 (Ti-6Al-4V)이 사용되고 있다. 제작 과정 중에 열간 형단조 공정이 이용되나 이 과정에서 Ti alloy의 좁은 성형 온도 구간 관계로 단조시 국부적 소성 변형 집중에 의한 결함이 단조품의 다수 생성되며, 심한 경우 전단 파단까지 이르고 있다. 성형 과정에서 금형과의 접촉에 의한 Ti 합금 온도 하강이 전단 파단 발생과 밀접한 관계를 갖고 있으며 따라서 각 단조 조건에 따른 Ti 합금의 내부 및 표면에 대한 변형 및 온도의 분포가 관찰되었다. 아울러 전단 밴드 형성에 대한 별도의 분석도 포함되었다.

  • PDF

THERMAL AND STRUCTURAL ANALYSIS OF CALANDRIA VESSEL OF A PHWR DURING A SEVERE ACCIDENT

  • Kulkarni, P.P.;Prasad, S.V.;Nayak, A.K.;Vijayan, P.K.
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.469-476
    • /
    • 2013
  • In a postulated severe core damage accident in a PHWR, multiple failures of core cooling systems may lead to the collapse of pressure tubes and calandria tubes, which may ultimately relocate inside the calandria vessel forming a terminal debris bed. The debris bed, which may reach high temperatures due to the decay heat, is cooled by the moderator in the calandria. With time, the moderator is evaporated and after some time, a hot dry debris bed is formed. The debris bed transfers heat to the calandria vault water which acts as the ultimate heat sink. However, the questions remain: how long would the vault water be an ultimate heat sink, and what would be the failure mode of the calandria vessel if the heat sink capability of the reactor vault water is lost? In the present study, a numerical analysis is performed to evaluate the thermal loads and the stresses in the calandria vessel following the above accident scenario. The heat transfer from the molten corium pool to the surrounding is assumed to be by a combination of radiation, conduction, and convection from the calandria vessel wall to the vault water. From the temperature distribution in the vessel wall, the transient thermal loads have been evaluated. The strain rate and the vessel failure have been evaluated for the above scenario.

기계적 밀링법으로 제조된 마그네슘 분말의 밀링시간에 따른 미세구조 변화와 부식거동 (Corrosion Behavior and Microstructural Evolution of Magnesium Powder with Milling Time Prepared by Mechanical Milling)

  • 안진우;황대연;김긍호;김혜성
    • 대한금속재료학회지
    • /
    • 제49권6호
    • /
    • pp.454-461
    • /
    • 2011
  • In this study, the relationship between corrosion resistance and microstructural characteristics such as grain size reduction, preferred orientation, and homogenous distribution of elements and impurity by mechanical milling of magnesium powder was investigated. Mechanical milling of pure magnesium powder exhibited a complex path to grain refinement and growth together with preferred orientation reversal with milling time. It was also found that anisotropic formation of dislocation on the basal plane of magnesium was initially the dominant mechanism for grain size reduction. After 60 hrs of milling, grain coarsening was observed and interpreted as a result of the strain relaxation process through recrystallization. In spite of the finer grain size and strong (002) texture developed in the sample prepared by spark plasma sintering at $500^{\circ}C$ for 5 min after mechanical milling for 2hrs, the sample showed a higher corrosion rate. The results from this study will be helpful for better understanding of the controlling factor for corrosion resistance and behaviors of mechanical milled magnesium powders.

Lateral impact behaviour of concrete-filled steel tubes with localised pitting corrosion

  • Gen Li;Chao Hou;Luming Shen;Chuan-Chuan Hou
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.615-631
    • /
    • 2023
  • Steel corrosion induces structural deterioration of concrete-filled steel tubes (CFSTs), and any potential extreme action on a corroded CFST would pose a severe threat. This paper presents a comprehensive investigation on the lateral impact behaviour of CFSTs suffering from localised pitting corrosion damage. A refined finite element analysis model is developed for the simulation of locally corroded CFSTs subjected to lateral impact loads, which takes into account the strain rate effects on concrete and steel materials as well as the random nature of corrosion pits, i.e., the distribution patterns and the geometric characteristics. Full-range nonlinear analysis on the lateral impact behaviour in terms of loading and deforming time-history relations, nonlinear material stresses, composite actions, and energy dissipations are presented for CFSTs with no corrosion, uniform corrosion and pitting corrosion, respectively. Localised pitting corrosion is found to pose a more severe deterioration on the lateral impact behaviour of CFSTs due to the plastic deformation concentration, the weakened confinement and the reduction in energy absorption capacity of the steel tube. An extended parametric study is then carried out to identify the influence of the key parameters on the lateral impact behaviour of CFSTs with localised pitting corrosion. Finally, simplified design methods considering the features of pitting corrosion are proposed to predict the dynamic flexural capacity of locally pitted CFSTs subjected to lateral impact loads, and reasonable accuracy is obtained.

Investigation on the tensile properties of glass fiber reinforced polymer composite for its use as a structural component at cryogenic temperature

  • Shrabani Ghosh;Nathuram Chakrobarty;Swapan C. Sarkar
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권3호
    • /
    • pp.43-48
    • /
    • 2023
  • Polymer composites, especially glass fiber reinforced polymer (GFRP) are finding ever-increasing applications in areas such as superconductivity, space technology, cryogenic rocket engines, and cryogenic storage vessels. Various components made of polymer composites are much lighter than their metallic counterparts but have equivalent strength for ultra-low temperature applications. In this paper, we have investigated the tensile properties of an indigenously prepared unidirectional cylindrical hollow composite tube for its use as a neck of the cryogenic vessel. XRD and SEM of the tube are completed before cryogenic conditioning to ascertain the fiber and resin distribution in the matrix. The result shows that for composites, after 15, 30, 45, and 60 minutes of cryogenic conditioning at 77K in a liquid nitrogen bath, the strength and modulus increase significantly with the increase of strain rate and reach the optimum value for 45 minutes of conditioning. The results are encouraging as they will be helpful in assessing the suitability of GFRP in the structural design of epoxy-based components for cryogenic applications.

수경시설 물놀이에 따른 대장균 감염의 위해도 분석 (Risk Assessment of Escherichia coli Infection from Use of Interactive Waterscape Facilities)

  • 조영근
    • 한국환경보건학회지
    • /
    • 제38권1호
    • /
    • pp.73-81
    • /
    • 2012
  • Objectives: With the goal of quantifying the risk of children contracting gastroenteritis while playing at interactive waterscape facilities and evaluating the adequacy of current water quality regulations, risk assessment was performed with Escherichia coli as pathogen. Methods: Abundances of E. coli in the waters of interactive water features in South Korea were acquired from survey reports. A gamma distribution describing the volume of water swallowed by children during swimming activities was adopted. Exposure rate and risk were calculated by Monte Carlo simulation and dose-response models for various pathogenic E. coli. Results: E. coli was detected in 25 out of 40 facilities, with range of ~1,600 CFU/100 ml. The abundance fitted an exponential distribution. Simulated exposures ranged ${\sim}1.9{\times}10^{10}$ CFU, varying greater along E. coli abundance than the volume of water. Risk of children being infected by enterohemorrhagic E. coli was high, with range of ~0.85. When E. coli abundance was <200 CFU/100 ml, which is the current government threshold, the risk decreased to <0.43. Although the guideline successfully reduced the risk of adults being infected by a less virulent E. coli strains (<0.03), the risk for children could not be quantified due to lack of dose-response models for those pathogens for children. Conclusions: Under the current guideline, children are at risk of being infected if water is contaminated with by enterohemorrhagic E. coli. For other E. coli strains, the risk appears to be considerably less. The result warrants need for developing dose-response models for children for each pathogenic E. coli strain.