• Title/Summary/Keyword: Strain rate distribution

Search Result 180, Processing Time 0.027 seconds

Powder Densification Using Equal Channel Angular Pressing (ECAP 공정을 이용한 분말의 치밀화)

  • Yoon Seung-Chae;Seo Min-Hong;Hong Sun-Ig;Kim Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.13 no.2 s.55
    • /
    • pp.124-128
    • /
    • 2006
  • In recent years, equal channel angular pressing (ECAP) has been the subject of intensive study due to its capability of producing fully dense samples having a ultrafine grain size. In this paper, the ECAP process was applied to metallic powders in order to achieve both powder consolidation and grain refinement. In the ECAP process for solid and powder metals, knowledge of the internal stress, strain and strain rate distribution is fundamental to the determination of the optimum process conditions for a given material. The properties of the ECAP processed solid and powder materials are strongly dependent on the shear plastic deformation behavior during ECAP, which is controlled mainly by die geometry, material properties, and process conditions. In this study, we investigated the consolidation, plastic deformation and microstructure evolution behaviour of the powder compact during ECAP.

Distribution of Corynebacterium renale in Cattle (축우(畜牛)에서의 Corynebacterium renale의 분포(分布))

  • Choi, Won-Pil;Park, Cheong-Kyu;Lee, Hyun-Beom
    • Korean Journal of Veterinary Research
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 1976
  • An attempt was made by the authors to survey the distribution of C. renale in apparently healthy Korean male cattle and dairy cattle, and to determine the types of C. renale isolated in Korea. A total of 153 urine samples and 240 vaginal smears were collected from 253 cows for examination, and 124 urine samples of Korean cattle were investigated. Of them, one case showed cystitis symptoms. The results obtained are summarized as follows: 1. The organism was detected from 8(6.5%) of 124 specimens of Korean cattle. The isolates studied in this survey belonged to type I (4.1%), type III (1.6%) and untypable(0.8%) of C. renale. 2. The rate of isolation of C. renale was 7.5% (19 of 253 individuals) in apparently healthy cow. The 26 strains isolated from the 19 dairy cattle belonged to type I (38.5%), type II (26.9%), type III (24.6%) and untypable(11.5%) in the serological classification. From the cow with clinical cystitis, type III strain was isolated. 3. It appears that the isolation rate depends on the history of pasture rather than the number of cattle; higher percentages were detected from the pasture which had fed for longer period. 4. From the findings mentioned above, it is clear that three types of C. renale were distributed in the apparently healthy Korean and dairy cattle in Korea. And this is the first report on the isolation and distribution of C. renale in Korea.

  • PDF

Influence of Impact Angle on Deformation in Proximal Femur during Slide Falling (측방 낙상시의 충격 각도가 대퇴골 근위부의 변형에 미치는 영향)

  • 김병수;배태수;김정규;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.233-239
    • /
    • 2003
  • Falling related injuries are categorized as the most serious and common medical problems experienced by the elderly, hip joint fracture, one of the most serious consequences of falling in the elderly, occurs in only about 1% of falling. Nevertheless, hip fracture accounts for a considerable part of the disability, death, and medical costs associated with falling. In this study, we considered the impact angle and displacement rate in falling as another factor affecting femoral strength. Using a fresh-frozen human femur, we developed system to simulate the falling condition and then conducted the experiments changing the impact angle (0$^{\circ}$, 15$^{\circ}$, 30$^{\circ}$) of proximal femur. Also, in order to analyze the relative risk due to falling to normal situation in proximal femur, we did the static test simulating the two-legged stance condition. The results showed that the change in impact angle affected the strain distribution in proximal femur, and that a large deformation in femoral neck than in other sites. Furthermore despite low impact velocity, a large deformation in proximal femur occurred in the impact test and different strain distribution was observed compare to the static case.

INTERGRANULAR CORROSION-RESISTANT STAINLESS STEEL BY GRAIN BOUNDARY ENGINEERING

  • Hiroyuki Kokawa;Masayuki Shimada;Wang, Zhan-Jie;Yutaka S. Sato
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.250-254
    • /
    • 2002
  • Intergranular corrosion of austenitic stainless steels is a conventional and momentous problem during welding and high temperature use. One of the major reasons for such intergranular corrosion is so-called sensitization, i.e., chromium depletion due to chromium carbide precipitation at grain boundaries. Conventional methods for preventing sensitization of austenitic stainless steels include reduction of carbon content in the material, stabilization of carbon atoms as non-chromium carbides by the addition of titanium, niobium or zirconium, local solution-heat-treatment by laser beam, etc. These methods, however, are not without drawbacks. Recent grain boundary structure studies have demonstrated that grain boundary phenomena strongly depend on the crystallographic nature and atomic structure of the grain boundary, and that grain boundaries with coincidence site lattices are immune to intergranular corrosion. The concept of "grain boundary design and control", which involves a desirable grain boundary character distribution, has been developed as grain boundary engineering. The feasibility of grain boundary engineering has been demonstrated mainly by thermomechanical treatments. In the present study, a thermomechanical treatment was tried to improve the resistance to the sensitization by grain boundary engineering. A type 304 austenitic stainless steel was pre-strained and heat-treated, and then sensitized, varying the parameters (pre-strain, temperature, time, etc.) during the thermomechanical treatment. The grain boundary character distribution was examined by orientation imaging microscopy. The intergranular corrosion resistance was evaluated by electrochemical potentiokinetic reactivation and ferric sulfate-sulfuric acid tests. The sensitivity to intergranular corrosion was reduced by the thermomechanical treatment and indicated a minimum at a small roll-reduction. The frequency of coincidence-site-lattice boundaries indicated a maximum at a small strain. The ferric sulfate-sulfuric acid test showed much smaller corrosion rate in the thermomechanically-treated specimen than in the base material. An excellent intergranular corrosion resistance was obtained by a small strain annealing at a relatively low temperature for long time. The optimum parameters created a uniform distribution of a high frequency of coincidence site lattice boundaries in the specimen where corrosive random boundaries were isolated. The results suggest that the thermomechanical treatment can introduce low energy segments in the grain boundary network by annealing twins and can arrest the percolation of intergranular corrosion from the surface.

  • PDF

Reinforcing Effect of Buildings Considering Load Distribution Characteristics of a Pre-compressed Micropile (선압축 보강마이크로파일의 하중분담 특성을 고려한 건물 보강효과에 대한 연구)

  • Lee, Kwang Hoon;Park, Yong Chan;Moon, Sung Jin;You, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.825-836
    • /
    • 2022
  • Micropiles can be used to support additional load in extended building structures. However, their use brings about a risk of exceeding the bearing capacity of existing piles. In this study, pre-compression was applied to distribute the load of an existing building to micropiles, and an indoor loading test was performed to confirm the structural applicability of a wedge-type anchorage device designed to improve its capacity. According to the test results, the maximum strain of the anchorage device was 0.63 times that of the yield strain, and the amount of slip generated at the time of anchorage was 0.11 mm, satisfying structural standards. In addition, using MIDAS GTS, a geotechnical finite element analysis software, the effect of the size of the pre-compression, the thickness of the soil layer, and the ground conditions around the tip on the reaction force of the existing piles and micropiles were analyzed. From the numerical analysis, as the size of the pre-compression load increased, the reaction force of the existing pile decreased, resulting in a reduction rate of up to 36 %. In addition, as the soil layer increased by 5 m, the reduction rate decreased by 4 %, and when the ground condition at the tip of the micropile was weathered rock, the reduction rate increased by 14 % compared with that of weathered soil.

A Study on High Temperature Deformation Behavior of Spray-Formed High Speed Steels (분무주조 고속도공구강의 고온변형 거동에 관한 연구)

  • Ha, T.K.;Jung, J.Y.
    • Transactions of Materials Processing
    • /
    • v.27 no.2
    • /
    • pp.123-129
    • /
    • 2018
  • In the present study, the mechanical behavior of the spray-formed high speed steel was investigated employing the internal variable theory of inelastic deformation. Special attention was focused on the effect of the microstructure evolution during the hot working process, such as the distribution of carbides to provide a basic database for the production condition of high speed steels with excellent properties. The billets of high speed steel ASP30TM were fabricated by a spray forming, and the subsequently hot-rolled and heat-treated process to obtain uniformly distributed carbide structure. As noted the spray-formed high speed steel showed relatively coarser carbides than hot-rolled and heat-treated one with fine and uniformly distributed carbide structure. The step strain rate tests and high temperature tensile tests were carried out on both the spray-formed and the hot-rolled specimens, to elucidate their high temperature deformation behavior. The spray-formed high speed steel showed much higher flow stress and lower elongation than the hot-rolled and heat-treated steel. During the tensile test at $900^{\circ}C$, the interruption of the deformation for 100 seconds was conducted to reveal that the recovery was a main dynamic deformation mechanism of spray formed high speed steel. The internal variable theory of the inelastic deformation was used to analyze data from the step strain rate tests, revealing that the activation energies for hot deformation of as-spray-formed and hot-worked steels, which were 157.1 and 278.9 kJ/mol, and which were corresponding to the dislocation core and lattice diffusions of ${\gamma}-Fe$, respectively.

Characterization of Yersinia Species Isolated from Animals in Korea (동물(動物)에 있어서 Yersinia속균(屬菌)의 분포(分布)와 특성(特性)에 관(關)한 연구(硏究))

  • Sung, Ki-chang;Choi, Won-pil
    • Korean Journal of Veterinary Research
    • /
    • v.27 no.2
    • /
    • pp.235-243
    • /
    • 1987
  • This paper deals with the distribution of Yersinia spp. isolated from the feces or the cecal contents of 1,755 pigs, 558 cows, 428 pigs slaughtered, 271 dogs slaughtered and 91 deer during the period of March 1985 to February 1986. Isolated Yersinia spp. were examined for serotype, biotype and antibiotic susceptibility of Y. enterocolitica. The results were as follows; One hundred and fourty-three stains of Yersinia spp. were isolated from 141(4.5%) out of 3,103 animals examined and their isolates were identified as Y. enterocolitica(138 strains), Y. kristensenii (3 strains), Y. intermedia(1 strain) and Y. pseudotuberculosis(1 strain). Yersinia spp. were isolated from 122(7.0%) of 1,755 pigs in piggeries, 15(3.5%) of 428 pigs slaughtered and 4(1.5%) of 271 dogs slaughtered, but no Yersinia spp. were isolated from cows and deer. The isolation rate of Yersinia spp. in pigs ranged from 5.9~8.0% in piggeries, it was higher in summer and autumn and highest in fattening pigs groups(10.4%), especially. One hundred and thirty-eight Y. enterocolitica isolates belonged to serotype 0 : 3(95 strains), 0 : 8(13 strains), 0 : 5(7 strains), 0 : 9(6 strains), 0 : 1, 2(1 strain) and untypable(16 strains), among them strains of serotype 0 : 3 biotype 3B(91 strains) were predominant. Antibiotic susceptibility test of 138 isolates of Yersinia spp. was performed by the agar dilution method, using 8 antibiotics as follows: ampicillin(Am), chloramphenicol, kanamycin, nalidixic acid(Na), rifampicin(Rf), streptomycin, sulfadimethoxine(Su) and tetracycline. All the strains tested were susceptible to Rf and Na, but resistant to Su, and 136 strains(98.6%) were also resistant to Am.

  • PDF

Analysis of Residual Stresses Induced by Cold Expansion Using Finite Element Method (유한요소법을 이용한 홀 확장 잔류응력 해석)

  • Kim, Cheol;Yang, Won-Ho;Heo, Seong-Pil;Jeong, Gi-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.46-51
    • /
    • 2002
  • Cold expansion of fastener holes is a mechanical process widely used in the aerospace industry. This treatment leads to an improvement of fatigue behavior due to the developed compressive residual stresses on the hole surface. The residual stress profile depends on the parameters of cold expansion, which are expanding rate, inserting direction of mandrel, material properties dtc. Despite its importance to aerospace industiries, little attention has been devoted to the accurate modeling of the process. In this paper, three-dimensional finite element simulations have been conducted for the cold expansion in an aluminium plate in order to predict the magnitude and distribution of the residual stress. To prove the results of FE analysis, the residual strain was measured by strain gage in cold expansion test. Maximum compressive residual stress could be increase about 7 percentage using the 2-step cold expansion method.

A Study on the Parameter Determination of Crustal Movement by Geodetic Technique (측지학적 방법에 의한 지각변동 매개변수 결정에 관한 연구)

  • 조규전;정의환
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.405-414
    • /
    • 2001
  • Plate tectonics is a dominant paradigm in modern geophysics. Because of its geological mechanism, Korea has a possibility of earthquake according to plate motion. Besides the disaster of earthquake grows rapidly, the importance of recognition for earthquake has been emphasized. This study attempts to decide crustal movement parameters with GPS data, analysed baseline after processing data with GIPSY-OASIS II S/W, observed from 6 stations in and around the Korean peninsula, and obtained from selected 11 stations in Korea. As a results, maximum shear strain was $0.04{\mu}/yr$ and the mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $97.75^{\circ}$ in and around the Korean peninsula. The average rate of the maximum shear strain($({\gamma}_max)$) is $0.17{\mu}/yr$. The mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $70.25^{\circ}$ in Korea. Such a pattern of strain distribution is harmonious with that of seismic activity in Korea both historically as well as today.

  • PDF

A Study on the Distribution of Antibiotic Resistant Bacteria in Domesticated Animal Feces (가축 분변중의 항생제 내성균주의 분포에 관한 연구)

  • Kwon, Hyuk-Ku;Lee, Jang-Hoon;Kim, Jong-Geu
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.142-150
    • /
    • 2012
  • Objectives: To estimate the multi-antibiotic resistant bacterial contaminant load discharged from livestock farms, we randomly selected livestock farms specializing in cattle, swine, and fowl and collected bacterial strains from domesticated animal feces and compost samples. Problems with resistance to antibiotics are becoming worldwide issues, and as the consumption of antibiotics appears to be excessive in Korea as well, the emergence of antibiotic resistant bacteria shows the possibility to cause potentially serious social problems. Methods: To monitor multi-antibiotic resistant bacterial constituents, aerobic bacteria and Escherichia coli were isolated from domesticated animal feces and compost. Antibiotic resistance testing was performed by the disc diffusion method using 13 different antibiotics. Results: Examining the degree of sensitivity to antibiotics of the aerobic bacteria originating from domesticated animal feces, fowl feces showed the highest distribution rate (35.5%), followed by swine feces compost (23.1%), swine feces (18.2%), cattle feces (14.9%), and cattle feces compost (8.2%). Antibiotic resistance tests of aerobic bacteria and E. coli originating from domestic animals feces resulted in 83.6% and 73.5% of each strain showing resistance to more than one antibiotic, respectively. Conclusions: These results suggest that increasing multi-antibiotic resistant bacteria in the environment has a close relation to the reckless use of antibiotics in livestock.