• Title/Summary/Keyword: Strain Stress Analysis

Search Result 2,289, Processing Time 0.028 seconds

Characterization and Life Prediction for an Electric Molding Machine (전동식 사출기의 특성파악 및 수명예측)

  • Kim, Jung-Soek;Hong, Sung-Won;Chung, Phil-Joong
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.794-799
    • /
    • 2001
  • For the development of an electric molding machine with low energy, high performance, and high reliability, characterization, finite element analysis and fatigue strength analyses were performed. Strain was measured by strain gages bonded on electric molding machine and compared with stress analysis results using I-DEAS. The analyses showed good agreement with test results. By means of the comparison, we could draw an adequate boundary condition for the stress analysis of the components of electric molding machine. Additionally, we could verify the load distribution mechanism among the parts. The life prediction results for tie bar and thread zone showed infinite life.

  • PDF

Design Sensitivity Analysis and Topology Optimization of Geometrically Nonlinear Structures (기하학적 비선헝 구조물의 설계 민감도해석 및 위상최적설계)

  • Cho, Seonho;Jung, Hyunseung;Yang, Youngsoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.335-342
    • /
    • 2002
  • A continuum-based design sensitivity analysis (DSA) method fur non-shape problems is developed for geometrically nonlinear elastic structures. The non-shape problem is characterized by the design variables that are not associated with the domain of system like sizing, material property, loading, and so on. Total Lagrangian formulation with the Green-Lagrange strain and the second Piola-Kirchhoff stress is employed to describe the geometrically nonlinear structures. The spatial domain is discretized using the 4-node isoparametric plane stress/strain elements. The resulting nonlinear system is solved using the Newton-Raphson iterative method. To take advantage of the derived analytical sensitivity In topology optimization, a fast and efficient design sensitivity analysis method, adjoint variable method, is employed and the material property of each element is selected as non-shape design variable. Combining the design sensitivity analysis method and a gradient-based design optimization algorithm, an automated design optimization method is developed. The comparison of the analytical sensitivity with the finite difference results shows excellent agreement. Also application to the topology design optimization problem suggests a very good insight for the layout design.

  • PDF

Prediction of Serrated Chip Formation due to Micro Shear Band in Metal (미소 전단 띠 형성에 의한 톱니형 칩 생성 예측)

  • 임성한;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.427-733
    • /
    • 2003
  • Adiabatic shear bands have been observed in the serrated chip during high strain rate metal cutting process of medium carbon steel and titanium alloy. The recent microscopic observations have shown that dynamic recrystallization occurs in the narrow adiabatic shear bands. However the conventional flow stress models such as the Zerilli-Armstrong model and the Johnson-Cook model, in general, do not predict the occurrence of dynamic recrystallization (DRX) in the shear bands and the thermal softening effects accompanied by DRX. In the present study, a strain hardening and thermal softening model is proposed to predict the adiabatic shear localized chip formation. The finite element analysis (FEA) with this proposed flow stress model shows that the temperature of the shear band during cutting process rises above 0.5T$\sub$m/. The simulation shows that temperature rises to initiate dynamic recrystallization, dynamic recrystallization lowers the flow stress, and that adiabatic shear localized band and the serrated chip are formed. FEA is also used to predict and compare chip formations of two flow stress models in orthogonal metal cutting with AISI 1045. The predictions of the FEA agreed well with the experimental measurements.

  • PDF

Failure analysis of tubes under multiaxial proportional and non-proportional loading paths

  • Mohammad Hossein Iji;Ali Nayebi
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.289-296
    • /
    • 2023
  • The failure of a thin-walled tube was studied in this paper based on three failure models. Both proportional and non-proportional loading paths were applied. Proportional loading consisted of combined tension-torsion. Cyclic non-proportional loading was also applied. It was a circular out-of-phase axial-shear stress loading path. The third loading path was a combination of a constant internal pressure and a bending moment. The failure models under study were equivalent plastic strain, modified Mohr-Coulomb (Bai-Wierzbicki) and Tearing parameter models. The elasto-plastic analysis was conducted using J2 criterion and nonlinear kinematic hardening. The return mapping algorithm was employed to numerically solve the plastic flow relations. The effects of the hydrostatic stress on the plastic flow and the stress triaxiality parameter on the failure were discussed. Each failure model under study was utilized to predict failure. The failure loads obtained from each model were compared with each other. The equivalent plastic strain model was independent from the stress triaxiality parameter, and it predicted the highest failure load in the bending problem. The modified Mohr-Coulomb failure model predicted the lowest failure load for the range of the stress triaxiality parameter and Lode's angle.

Finite Element Analysis for Micro-Forming Process Considering the Size Effect of Materials (소재 크기효과를 고려한 미세가공공정 유한요소해석)

  • Byon, S.M.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.544-549
    • /
    • 2006
  • In this work, we have employed the strain gradient plasticity theory to investigate the effect of material size on the deformation behavior in metal forming process. Flow stress is expressed in terms of strain, strain gradient (spatial derivative of strain) and intrinsic material length. The least square method coupled with strain gradient plasticity was used to calculate the components of strain gradient at each element of material. For demonstrating the size effect, the proposed approach has been applied to plane compression process and micro rolling process. Results show when the characteristic length of the material comes to the intrinsic material length, the effect of strain gradient is noteworthy. For the microcompression, the additional work hardening at higher strain gradient regions results in uniform distribution of strain. In the case of micro-rolling, the strain gradient is remarkable at the exit section where the actual reduction of the rolling finishes and subsequently strong work hardening take places at the section. This results in a considerable increase in rolling force. Rolling force with the strain gradient plasticity considered in analysis increases by 20% compared to that with conventional plasticity theory.

Behavior of Polymerization Shrinkage Stress of Methacrylate-based Composite and Silorane-based Composite during Dental Restoration (Methacrylate 기질 복합레진과 Silorane 기질 복합레진의 치아 수복 시 중합수축응력거동)

  • Park, Jung-Hoon;Choi, Nak-Sam
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.6-14
    • /
    • 2015
  • Polymerization shrinkage stress analysis of dimethacrylate-based composite (Clearfil AP-X, Kuraray) and silorane-based composite (Filtek P90, 3M ESPE) used for dental composite restorations was performed using strain-gage measurement and FEM analysis. A theoretical equation based on Young's modulus and polymerization shrinkage of the composite resin was proposed to predict the polymerization shrinkage stress. Experimental results showed that the maximum shrinkage stress of Clearfil AP-X was about 2.8 times higher than Filtek P90. FEM analysis agreed with such experimental stress behaviours and showed that the maximum Von-Mises stress appeared near the margin of the filled resin adhered with PMMA ring. The stress concentration at the interface on the specimen surface was higher than that in the interior. The maximum error of shrinkage stress by the theoretical equation was reasonable within 5% in comparison to FEM results under plane stress.

A Study on the Mechanical Behavior of Welded Parts in Thick Plate during Post Welding Heat Treatment (厚板熔接部의 應力除去 熱處理時의 力學的 擧動에 關한 硏究)

  • 방한서
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.103-111
    • /
    • 1993
  • Recently, several high-tensile steels(e.g. 80kg and above, $2^{1/4}Cr$-1Mo)having good quality to high temperature and pressure-resistance are widely used to construct petroleum-plant and pressure vessel of heat or nuclear-power plant. However, in the steels, reheating crack at grain boundaries of the heat affected zone(HAZ) occures during post welding heat treatment(PWHT)to remove welding residual stress. In order to study theoretically the characteristics of reheating crack created by PWHT, the computer program of three-dimensional thermal-elasto-plasto-creep analysis based on finite element method are developed, and then the mechanical behavior(history of creep strain accumulation and stress relaxation, etc)of welded join in thick plate during PWTH is clarified by the numerical results.

  • PDF

Fatigue Life Evaluation by ${\sigma}-N$ and ${\epsilon}-N$ Approaches Considering Residual Stresses (잔류응력을 고려한 국부변형률과 공칭응력 기준 피로수명 평가)

  • Goo, Byeong-Choon;Yang, Sung-Yong;Seo, Jung-Won;Jun, Hung-Chai
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.342-347
    • /
    • 2004
  • To evaluate the fatigue lives of welded joints taking into residual stress relaxation, two approaches are applied. One is based on the conventional local strain analyses. The other is based on a model developed by the authors. In the first approach, the Ramberg-Osgood relation, Lawrence model and S.W.T. parameter are used. In the second approach, The S-N curve for a welded joint is deduced from that of the parent material. Residual stress relaxation obtained by finite element analysis is considered. Finally, we evaluate the fatigue lives for four weld details using the two approaches.

  • PDF

The study of stress distribution of cold rolled Steel sheets in tension leveling process (냉연 형상 교정시 Stress 천이 현상 연구)

  • Choi H.T.;Hwang S.M.;Koo J.M.;Park K.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.74-79
    • /
    • 2004
  • The shape of cold rolled steel sheets is the degree of flatness, and the flatter, the better. Because undesirable strip shapes of cold rolled steel sheets can affect not only visible problem but also automatic working process in customer's lines, the requirement of the customers is more and more stringent. So we usually used the tension leveler to make high quality of strip flatness. For the improvement of the quality of strip flatness, this report developed three-dimensional FEM (Finite Element Method) simulation model, and analysis about the strain and stress distribution of strip in the tension leveling process.

  • PDF

Mock-up test for the comparison of hydration heat the thermal stress in different types of cements (시멘트 종류별 수화열 및 온도응력 비교를 위한 모형타설 실험 연구)

  • 김상철;이두재;강석화;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.187-192
    • /
    • 1998
  • Recent construction method in mass concrete structures would depend on the control of hydration heats and thermal stresses by using the low heat cement, optimized block size and a lift height, or both. This experimental study aims at the possibility of thermal cracks according to the different types of cementations material and at the investigation of these effects. Four different types of cements are applied to the mock-up test and are evaluated in terms of temperature rises and thermal stresses with the use of thermocouples, strain gauges and effective stress gauges. As a result of this study, it was found that stresses measured from effective stress gauges agree well with ones form strain gauges, and the trend of stress occurrence can be well evaluated from theoretical analysis.

  • PDF