• Title/Summary/Keyword: Strain Stress Analysis

Search Result 2,289, Processing Time 0.029 seconds

Study on the Wrinkling Prediction in Sheet Metal Stamping Processes (박판 스탬핑 공정의 주름발생 예측에 관한 연구)

  • 황보원;금영탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.131-142
    • /
    • 2001
  • A wrinkling is the instability phenomenon influenced by material properties, shape geometry, forming conditions, stress state, etc. The wrinkling is considered as a critical defect in appearance of product. Many wrinkling prediction methods using thickness strain distribution and farming analysis have been proposed. The wrinkling, however, is not easily predicted precisely by these methods. In this study, the region in the biaxial plane stress state is modeled with a rectangular plate introducing the effective dimension, and critical stress values for the wrinkling are calculated. Prediction index for the wrinkling is then evaluated by normalizing the actual stress with respect to the critical stress. In order to show the validity and efficiency of the method proposed, the wrinkling prediction for a squared sheet in the uniaxial tensile stress and auto-body front finder panel is performed.

  • PDF

Constitutive Model of Laterally Confined High Strength Concrete (횡구속된 고강도 콘크리트의 구성모델)

  • Yun, Sung-Hwan;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.481-488
    • /
    • 2010
  • Since existing constitutive models developed for confined normal strength concrete overestimate ductility when they are applied to confined high strength concrete, these models cannot be directly applied to confined high strength concrete. In an effort to solve this problem, an accurate stress-strain relationship of the hihg strength concrete needs to be formulated by examining the confinement effects due to increase of the concrete strength. In this study, a constitutive model is developed to express the stress-strain relationship of confined high strength concrete by carrying out regression analysis of the main parameters affection strength and ductile behavior of reinforced high strength concrete columns. Twenty-five test specimens were chosen from the reported experimental studies in the literature. The experimental results of stress-strain relationships of show a good agreement with results of the stress-strain relationships of suggested high strength concrete, covering a strength range between 60 and 124 MPa.

Nonlinear Finite Element Analysis of RC Shear Walls under Cyclic Loadings (반복하중을 받는 철근콘크리트 전단벽의 비선형 유한요소 해석)

  • 곽효경;김도연
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.353-367
    • /
    • 2003
  • This paper describes the extension of the numerical model, which was developed to simulate the nonlinear behavior of reinforced concrete (RC) structures subjected to monotonic in plane shear and introduced in the companion paper, to simulate effectively the behavior of RE structures under cyclic loadings. While maintaining all the basic assumptions adopted in defining the constitutive relations of concrete under monotonic loadings, a hysteretic stress strain relation of concrete, which across the tension compression region, is defined. In addition, unlike previous simplified stress strain relations, curved unloading and reloading branches inferred from the stress strain relation of steel considering the Bauschinger effect we used. The modifications of the stress strain relation of steel are also introduced to reflect pinching effect depending on the shear span ratio and an average stress distribution in a cracked RC element. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

Strain Analysis of Mechanical Structure by Laser Speckle Interferometry (레이저 스페클 간섭법에 의한 구조물의 변형해석)

  • 김경석;강기수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.19-23
    • /
    • 2004
  • 최근 산업의 고도화와 함께 초고온, 방사선노출 등과 같은 극한환경에서 사용되는 구조물과 MEMS 와 같은 미소 구조물(Hicrostructure)이 많아지고 있으며, 이들의 변형해석을 위한 기존의 접촉식 기법들은 그 한계를 극복해야 할 필요가 있다 해결방안으로 레이저를 이용한 비접촉 측정방식이 많은 발전을 해오고 있으며, 특히, 스페클간섭법(Speckle inteferometry)기반의 변형해석 기술이 가장 뛰어난 기술로 인정받고 있다. 스페클간섭법은 컴퓨터 화상처리기술에 힘입어 전자처리 스페클간섭법(Electronic Speckle Pattern Interferometry : ESPI)으로 발전을 하고 있으며, 자동차와 같은 대형구조물의 변형해석에서 MEMS 구조물과 같은 미소구조물 변형해석까지 그 적용범위가 매우 넓다. 본 논문에서는 ESPI 를 이용한 변형해석분야의 국내외 기술현황 및 적응사례, 발전방향를 소개하였다.(중략)

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit -Part I: Parameter Estimation for Analysis (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 -Part I: 해석 물성치 평가)

  • Kwak, Tae-Hoon;Lee, Chul-Ho;Lim, Jee-Hee;An, Yong-Hoon;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.13-24
    • /
    • 2011
  • The renowned Terzaghi's one-dimensional consolidation theory is not applicable to quantification of time-rate settlement for highly deformable soft clays such as dredged soil deposits. To deal with this special condition, a non-linear finite strain consolidation theory should be adopted to predict the settlement of dredged soil deposits including self-weight and surcharge-induced consolidation. It is of importance to determine the zero effective stress void ratio ($e_{00}$), which is the void ratio at effective stress equal to zero, and the relationships of void ratio-effective stress and of void ratio-hydraulic conductivity for characterizing non-linear finite strain consolidation behavior for deformable dredged soil deposits. The zero effective stress void ratio means a transitional status from sedimentation to self-weight consolidation of dredged soils. In this paper, laboratory procedures and equipments are introduced to measure such key parameters in the non-linear finite strain consolidation analysis. In addition, the non-linear finite strain consolidation parameters of the Incheon clay and kaolinite are evaluated with the aid of the proposed methods in this paper, which will be used as input parameters for the non-linear finite strain consolidation analyses being performed in the companion paper.

Evaluation of Fracture Toughness of Al alloys for Propulsive Engine using Strain Measurement (변형률 측정을 이용한 추진기관용 Al 합금의 파괴인성 평가)

  • 김재훈;김덕회;임동규;박성욱;문순일
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.3
    • /
    • pp.13-21
    • /
    • 2002
  • The tincture toughness is evaluated by using U(compact tension) and 3PB(three point bending) specimens of AI alloys far propulsive engine. To evaluate the static fracture toughness, strain gage method is used. The static fracture toughness obtained from the strain measurement is compared with the results by ASTM standard and FEM analysis. For the reliable evaluation of fracture toughness, strain gages are attached at various positions.

Analysis and Design Programming of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 RC보의 해석 및 설계 프로그램 개발)

  • 김성도;김성수
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.319-325
    • /
    • 2004
  • In this study, analysis and design programs of bending of RC beams strengthened with fiber sheets are developed by using Visual Basic Language. The program consists two groups, ultimate strength method and nonlinear flexural analysis method. Ultimate strength method regards concrete compressive stress as a rectangular stress block and do not consider tensile stress of concrete and load-deflection curves. On the other hand, nonlinear flexural analysis considers tensile stress of concrete, load-deflection curves, state of stress distribution and failure strain of strengthening material. Also, the analysis method used in this study regards nonlinear flexural stress as compressive stress of concrete. This program can be a good tool for determining the bending strength of strengthened RC beams and estimating the amount of fiber sheets for practical use.

Deformation Analysis of Geosynthetic Reinforced Retaining Wall by Using Temperature Dependent Confined Tension Test Results (온도제어 구속인장시험에 의한 토목섬유 보강토옹벽의 변위해석)

  • 김홍택;방윤경;조용권
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.97-106
    • /
    • 2003
  • In this study, the effect of temperature and soil confining stress on geosyntheic stress-strain properties was quantified by performing the temperature dependent confined tension tests for four types of geosynthetic including woven geotextile, composite, geomembrane and geogrid specimen. Temperature instrumentation on the GRS-retaining wall constructed in Jaechon-shi area was also performed to examine the a seasonal temperature variation of geosynthetic reinforcements in the backfill. Based on the test results, a comparison was made between unconfined and confined moduli far each temperature to quantify the soil confinement and temperature effect on stress-strain properties. And it was also proposed that the simple expressions for the secant moduli of geosynthetics as a function of temperature and confining stress on geosynthetics. As a result of the FDM analysis of GRS-retaining wall, the method of considering the effect of temperature and confining stress on geosynthetic reinforcements when performing the FDM analysis of GRS-retaining wall was proposed.

Shear response estimate for squat reinforced concrete walls via a single panel model

  • Massone, Leonardo M.;Ulloa, Marco A.
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.647-665
    • /
    • 2014
  • Squat reinforced concrete walls require enough shear strength in order to promote flexural yielding, which creates the need for designers of an accurate method for strength prediction. In many cases, especially for existing buildings, strength estimates might be insufficient when more accurate analyses are needed, such as pushover analysis. In this case, estimates of load versus displacement are required for building modeling. A model is developed that predicts the shear load versus shear deformation of squat reinforced concrete walls by means of a panel formulation. In order to provide a simple, design-oriented tool, the formulation considers the wall as a single element, which presents an average strain and stress field for the entire wall. Simple material constitutive laws for concrete and steel are used. The developed models can be divided into two categories: (i) rotating-angle and (ii) fixed-angle models. In the first case, the principal stress/strain direction rotates for each drift increment. This situation is addressed by prescribing the average normal strain of the panel. The formation of a crack, which can be interpreted as a fixed principal strain direction is imposed on the second formulation via calibration of the principal stress/strain direction obtained from the rotating-angle model at a cracking stage. Two alternatives are selected for the cracking point: fcr and 0.5fcr (post-peak). In terms of shear capacity, the model results are compared with an experimental database indicating that the fixed-angle models yield good results. The overall response (load-displacement) is also reasonable well predicted for specimens with diagonal compression failure.

Endurance Life and Deformation Behavior under Thermo-mechanical Fatigue of Nb-added Heat Resistant Austenitic Stainless Steel (Nb 첨가 오스테나이트계 내열 스테인리스강의 열기계적 피로 수명 및 변형 거동)

  • Oh, Yong Jun;Park, Joong-Cheul;Yang, Won Jon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.7
    • /
    • pp.541-548
    • /
    • 2011
  • Thermomechanical fatigue (TMF) behavior of heat resistant austenitic stainless steel was evaluated in the temperature range from 100$^{\circ}C$ to peak temperatures of 600 to 800$^{\circ}C$; The fatigue lives under TMF conditions were plotted against the plastic strain range and the dissipated energy per cycle. In the expression of the inelastic strain range versus fatigue life, the TMF data obtained at different temperature ranges were located close to a single line with a small deviation; however, when the dissipated energy per cycle, calculated from the area of the stress-strain hysteresis loops at the half of the fatigue life, was plotted against the fatigue life, the data showed greater scattering than the TMF life against the inelastic strain range. A noticeable stress relaxation in the stress-strain hysteresis curve took place at the peak temperatures higher than 700$^{\circ}C$, but all specimens in this study exhibited cyclic hardening behavior with TMF cycles. Recrystallization occurred during the TMF cycle concurrent with the formation of fine subgrains in the recrystallized region, which is considered to cause the cyclic hardening of the steel.