• Title/Summary/Keyword: Strain Modal Testing

Search Result 16, Processing Time 0.025 seconds

Characteristics and Applications of a Strain Modal Testing Method (변형률 모드시험방법의 특성 및 응용)

  • 차주환;하태희;이건명
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.420-427
    • /
    • 1998
  • A strain modal testing method has been applied to a cantilever beam to investigate the characteristics of the method. By applying the method to an analytical and an experimental system, it was shown that accurate modal parameters can be estimated from strain frequency response functions using a current modal parameter extraction algorithm. The modal parameters estimated by the method are more accurate than those by the conventional method which uses accelerometers when the tested system is of light weight. The method can be used to predict strain responses and excitation forces for given excitation forces and responses, respectively. Cracks on a structure can be detected by measuring strian FRFs and comparing them with the original ones.

  • PDF

Prediction of Strain Responses from Displacement Response Measurements (변위응답의 측정으로부터 변형률응답의 예측)

  • 이건명;신봉인;이한희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1384-1387
    • /
    • 2001
  • Presented is a method to predict strain responses from displacement measurements on a mechanical structure. The method consists of forming a transformation matrix, which is calculated from displacement and strain modal matrices. The modal matrices can be obtained by either finite element analysis or modal testing. One disadvantage of the method is that it requires displacements on all measuring points be measured simultaneously. The strain prediction method is applied to a simple simulated system.

  • PDF

A Study on the Characteristics and Applications of a Strain Modal Testing Method (변형률 모드시험방법의 특성 및 응용)

  • 차주환;하태희;이건명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.216-221
    • /
    • 1997
  • A strain modal testing method has been applied to a cantilever beam to investigate the characteristics of the method. By applying the method to an analytical and an experimental system, it was shown that accurate modal parameters can be estimated from the FRFs using a current modal parameter extraction algorithm. The modal parameters estimated by the method are more accurate than those by the conventional method which uses accelerometers when the tested system is of light weight. The strain response for a given excitation force and the force which causes the response can be predicted using the measured strain FRFS.

  • PDF

Experimental Study on Characteristics of Strain Modal Testing and its Application (변형률 모드시험법 특성의 실험적 고찰 및 응용)

  • Ju, Young-Sam;Lee, Hyung-Seok;Lee, Gun-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.519-524
    • /
    • 2000
  • The types of responses which are generally measured in the modal testing are displacement, velocity or acceleration. In strain modal testing, however, strain responses subject to excitation forces are measured. In this paper, the characteristics of strain modal testing are investigated experimentally. Investigated are the effects of frequency range, excitation force level, and excitation signal on the quality of measured strain frequency response functions. It has been shown that a strain FRF at a point can be predicted from displacement FRFs and strain FRFs at other points.

  • PDF

Damage Detection of a Steel Member Using Modal Testing (강부재의 손상발견을 위한 모달실험 기법)

  • Jang, Jeong Hwan;Lee, Jung Whee;Kim, Sung Kon;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.467-477
    • /
    • 1997
  • A series of experimental tests have been performed on a tube beam in which artificial damage is applied in order to address damage detectability using modal analysis. Modal parameters considered are frequency, displacement mode shape and strain mode shape CoMAC(Coordinate Modal Assurance Criterion) and Modal Vector Error have been adopted for presenting the change of displacement mode shape and strain mode shape. It is revealed strain mode shape is the most sensitive to damage.

  • PDF

Modal parametric changes in a steel bridge with retrofitting

  • Walia, Suresh Kumar;Vinayak, Hemant Kumar;Kumar, Ashok;Parti, Raman
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.385-403
    • /
    • 2015
  • This paper presents the status improvement of an old damaged deck type rural road steel truss bridge through the modal parametric study after partial retrofitting. The dynamic and static tests on bridge were carried out as in damaged state and after partial retrofitting. The dynamic testing on the steel bridge was carried out using accelerometers under similar environmental conditions with same speed of the moving vehicle. The comparison of the modal parameters i.e., frequency, mode shape mode shape curvature, modal strain energy, along with the deflection parameter are studied with respect to structural analytical model parameters. The status up gradation for the upper and downstream truss obtained was different due to differential level of damage in the bridge. Also after retrofitting the structural elemental behavior obtained was not same as desired. The damage level obtained through static tests carried out using total station indicated further retrofitting requirement.

Damage identification in beam-like pipeline based on modal information

  • Yang, Zhi-Rong;Li, Hong-Sheng;Guo, Xing-Lin;Li, Hong-Yan
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.179-190
    • /
    • 2007
  • Damage detection based on measured vibration data has received intensive studies recently. Frequently, the damage to a structure may be reflected by a change of some system parameters, such as a degradation of the stiffness. In this paper, we apply a method to nondestructively locate and estimate the severity of damage in corrosion pipeline for which a few natural frequencies or mode shapes are available. The method is based on the strain modal sensitivity ratio (SMSR) and the orthogonality conditions sensitivities (OCS) applied to vibration features identified during the monitoring of the pipeline. The advantage of these methods is that it only requires measuring few modal parameters. The SMSR-based and OCS-based damage detection methods are illustrated using computer-simulated and laboratory testing data. The results show that the current method provides a precise indication of both the location and the extent of corrosion pipeline.

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.

Structural Damage Monitoring of Harbor Caissons with Interlocking Condition

  • Huynh, Thanh-Canh;Lee, So-Young;Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.678-685
    • /
    • 2012
  • The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple-caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear-key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons.

Reduction of Non-Repeatable Runount in a HDD Using Visco-elastic Damping Material (점탄성 댐핑 물질을 이용한 하드 디스크 드라이브의 NRRO저감)

  • 장건희;홍선주;한재혁;김동균
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1234-1239
    • /
    • 1999
  • This research investigates the characteristicsw of NRRO in a 2.5" HDD by using FEM, modal testing and runout analysis, and reduces NRRO using visco-elastic damping material. Most frequency components of NRRO are generated by the defects of ball and rotating race, and they can be determined by the kinematic analysis of ball bearing. It also proposes the novel design of a spindle motor that can reduce NRRO effectively by inserting the visco-elastic damping material to one of the transmission path of NRRO, i.e., where the strain energy is highly concentrate. By this technique, NRRO is reduced by 27%. 27%.

  • PDF