• 제목/요약/키워드: Strain Frequency Response

검색결과 154건 처리시간 0.028초

CDSS 실험을 이용한 모래의 액상화 후 체적변형 영향인자 분석 (Analysis of Volumetric Deformation Influence Factor after Liquefaction of Sand using Cyclic Direct Simple Shear Tests)

  • 에레라 디에고;김종관;곽태영;한진태
    • 한국지반공학회논문집
    • /
    • 제40권3호
    • /
    • pp.65-75
    • /
    • 2024
  • 본 연구에서는 여러 영향 인자들이 사질토의 액상화로 인한 침하에 미치는 영향을 확인하기 위해 변형률 제어조건 하에서 반복단순직접전단시험을 수행하였다. 누적 전단 변형률, 상대밀도, 반복 하중의 형태, 시료 준비 방법 등의 다양한 인자들을 선정하였으며, 지진 하중이 발생하였을 때 인자들이 지반 침하에 미치는 영향을 분석하였다. 시험 결과, 누적 전단 변형률이 낮고 상대밀도가 높은 시료에서 더 작은 부피 변형이 발생하였다. 추가적으로 반복하중의 진폭은 부피 변형에 영향을 미쳤으나, 주파수는 시료의 부피 변형에 영향을 미치지 않는다는 사실을 확인할 수 있었다. 시료 준비 방법에 따라서도 액상화에 따른 침하가 다른 양상을 보인다는 사실을 확인하였으며, 이와 같은 결과들은 향후 액상화로 인한 침하 예측을 수행할 때 기초 연구로써 의미가 있을 것으로 기대된다.

접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석 (Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring)

  • 김민규;김문겸;이종세
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF

조화력에 의한 원환의 강제진동 (Forced Vibration of a Circular Ring with Harmonic Force)

  • 홍진선
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.123-128
    • /
    • 2005
  • Forced vibration of a thin circular ring with a concentrated harmonic force is analyzed when the ring is free and has only the in-plane motion. Using the unit doublet function for external force, the governing equation is obtained and is solved by the use of Laplace transform. The exact solutions of displacement components and bending moment are obtained. In order to verify the solutions of analysis, finite element analysis is performed and the results shows good agreement. Then, frequency response curves for displacement and bending moment are obtained. In deriving the governing equations and the solutions, nondimensional parameter of the exciting frequency and the magnitude of exciting force are extracted. As the displacement components are obtained, the remaining bending strain, slope, curvature, shear force, etc. can also be derived. With the results of this work, the responses of a free ring excited on multiple points with different frequencies can also be obtained easily by superposition.

구조용 사각 보의 감쇠측정 (Damping Measurements of Structural Rectangular Beam)

  • 류봉조;송선호;윤충섭;안병욱;이영엽
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1071-1074
    • /
    • 2006
  • The frequency response functions and loss factors, $\eta$, of structurally hollowed, rectangular, metal cantilever beams have been measured in bending vibrations within low strain amplitudes. The beams were heat treated or fined with aluminum to vary the material conditions. The measured frequency response functions at the end of the cantilevered beam were processed to calculate the structural damping ratios. The results showed that the modal frequencies and damping ratios of heat treated beam are increased due to the increase of beam rigidity with the predictions of the classical beam theory. When the beams are fined with aluminum, however, the frequencies are decreased due to the increase of mass, while the damping ratios are increased. As the agreement between measurement and classical theory is good, the performance of a beam with heat treated or fined with dissimilar material can be duplicated, for industrial and most practical purposes, by the theory developed for an internally damped homogeneous beam.

  • PDF

Transient stochastic analysis of nonlinear response of earth and rock-fill dams to spatially varying ground motion

  • Haciefendioglu, Kemal
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.647-664
    • /
    • 2006
  • The main purpose of this paper is to investigate the effect of transient stochastic analysis on nonlinear response of earth and rock-fill dams to spatially varying ground motion. The dam models are analyzed by a stochastic finite element method based on the equivalent linear method which considers the nonlinear variation of soil shear moduli and damping ratio as a function of shear strain. The spatial variability of ground motion is taken into account with the incoherence, wave-passage and site response effects. Stationary as well as transient stochastic response analyses are performed for the considered dam types. A time dependent frequency response function is used throughout the study for transient stochastic responses. It is observed that stationarity is a reasonable assumption for earth and rock-fill dams to typical durations of strong shaking.

Seismic Analysis on Recycled Aggregate Concrete Frame Considering Strain Rate Effect

  • Wang, Changqing;Xiao, Jianzhuang;Sun, Zhenping
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.307-323
    • /
    • 2016
  • The nonlinear behaviors of recycled aggregate concrete (RAC) frame structure are investigated by numerical simulation method with 3-D finite fiber elements. The dynamic characteristics and the seismic performance of the RAC frame structure are analyzed and validated with the shaking table test results. Specifically, the natural frequency and the typical responses (e.g., storey deformation, capacity curve, etc.) from Model 1 (exclusion of strain rate effect) and Model 2 (inclusion of strain rate effect) are analyzed and compared. It is revealed that Model 2 is more likely to provide a better match between the numerical simulation and the shaking table test as key attributes of seismic behaviors of the frame structure are captured by this model. For the purpose to examine how seismic behaviors of the RAC frame structure vary under different strain rates in a real seismic situation, a numerical simulation is performed by varying the strain rate. The storey displacement response and the base shear for the RAC frame structure under different strain rates are investigated and analyzed. It is implied that the structural behavior of the RAC frame structure is significantly influenced by the strain rate effect. On one hand, the storey displacements vary slightly in the trend of decreasing with the increasing strain rate. On the other hand, the base shear of the RAC frame structure under dynamic loading conditions increases with gradually increasing amplitude of the strain rate.

진동가속도계의 주파수응답특성 개선에 관한 연구 (Study on improvement of frequency response characteristics of accelerometer)

  • 한응교;조진호
    • 오토저널
    • /
    • 제3권1호
    • /
    • pp.61-68
    • /
    • 1981
  • There are three types in frequency response accelerometer; one is lightly damped piezp type, another is oil damping stainguage type and the third is electro induction type accelerometer within electromagnetic damping. The usable frequency range of lightly damped accelerometers is limited to 0.2 of their mounted natural frequency for amplitude distortion of less than 5 percents. There have been situation where the measured motion contains unforeseen high - frequency components, which are regarded as such due to the accelerometer transfer function. There are several way to overcome amplitude distortion of the higher than anticipated frequency components; (I) to make use of the accelerometer with natural frequency three times and more as high as the measured frequency, (II) to establish data-analysis techniques which will account for the amplitude distortion, (III) to set up a notch filter circuit which has a transfer function that is the reciprocal of the accelerometer transfer function, and so on. This paper makes a report of the method as to(III), i. e., set up a few notch filter circuits, it is discussed what happens when the transfer functions, are in discord as to natural frequency of the filter and accelerometer damping vs. filter damping. And especially as for the cantilever strain gauge type accelerometer made by oneself with ease, it was compared and discussed between the ideological value and the experimental value of actual designed circuit in case of the mismatching of the transfer functions, and it was considered whether to be practicable or not, the result of which was as following; the useful frequency range of the accelerometer can be extended to near resonance if (a) the accelerometer mounted natural frequency and the filter center frequency are matched within .+-. 2 percent and (b) the damping ratios are matched within two factors. Therefore, we obtained the good result in improvement for extending frequency response characteristics of accelerometer.

  • PDF

풍동용 3 축 로드셀의 구조최적설계 (Optimum Structural Design of a Triaxial Load Cell for Wind Tunnel Test)

  • 이재훈;송창곤;박성훈
    • 한국정밀공학회지
    • /
    • 제28권2호
    • /
    • pp.226-232
    • /
    • 2011
  • In this study, an optimized design of a triaxial load cell has been developed by the use of finite element analysis, design of experiment and response surface method. The developed optimal design was further validated by both stress-strain analysis and natural vibration analysis under an applied load of 30 kgf. When vertical, horizontal, and axial loads of 30 kgf were applied to the load cell with the optimal design, the calculated strains were satisfied with the required strain range of $500{\times}10^{-6}{\pm}10%$. The natural vibration analysis exhibited that the fundamental natural frequency of the optimally designed load cell was 5.56 kHz and higher enough than a maximum frequency of 0.17 kHz which can be applied to the load cell for wind-tunnel tests. The satisfactory sensitivity in all triaxial directions also suggests that the currently proposed design of the triaxial load cell enables accurate measurements of the multi-axial forces in wind-tunnel tests.

Strain-Modulated Photoluminescence in Single-Layer $MoS_2$

  • 고택영;박광희;류순민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.620-620
    • /
    • 2013
  • When $MoS_2$ is thinned to single layer (1L), photoluminescence (PL) quantum yield drastically increases due to emergence of direct band gap. A recent theory predicts that the electronic structure of 1L $MoS_2$ is very sensitive to its lattice constants. We investigated the response of 1L $MoS_2$ to biaxial tensile strain using spatially resolved PL and Raman spectroscopy. Changes in the lattice constants were monitored by the Raman frequency of the in-plane ($E^1{_2g}$) mode. Systematic correlations between PL and Ramanspectral features, revealed in the preliminary results, will be further tested with samples on other substrates and against thermal stress. The results will also be discussed in regard to the theory which predicts that 1L $MoS_2$ becomes an indirect semiconductor at small tensile strain and turns metallic when further extended.

  • PDF