• 제목/요약/키워드: Strain Energy Release Rate

검색결과 95건 처리시간 0.017초

A comparative study for beams on elastic foundation models to analysis of mode-I delamination in DCB specimens

  • Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제37권2호
    • /
    • pp.149-162
    • /
    • 2011
  • The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.

Non-linear study of mode II delamination fracture in functionally graded beams

  • Rizov, Victor I.
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.263-271
    • /
    • 2017
  • A theoretical study was carried-out of mode II delamination fracture behavior of the End Loaded Split (ELS) functionally graded beam configuration with considering the material non-linearity. The mechanical response of ELS was modeled analytically by using a power-law stress-strain relation. It was assumed that the material is functionally graded transversally to the beam. The non-linear fracture was investigated by using the J-integral approach. Equations were derived for the crack arm curvature and zero axes coordinate that are needed for the J-integral solution. The analysis developed is valid for a delamination crack located arbitrary along the beam height. The J-integral solution was verified by analyzing the strain energy release rate with considering material non-linearity. The effects of material gradient, non-linear material behavior and crack location on the fracture were evaluated. The solution derived is suitable for parametric analyses of non-linear fracture. The results obtained can be used for optimization of functionally graded beams with respect to their mode II fracture performance. Also, such simplified analytical models contribute for the understanding of delamination fracture in functionally graded beams exhibiting material non-linearity.

콘크리트의 불안정 균열성장에 관한 연구 (A Study on the Unstable Crack Growth of Concrete)

  • 고영주;배주성
    • 대한토목학회논문집
    • /
    • 제11권3호
    • /
    • pp.29-36
    • /
    • 1991
  • 본 연구에서는 ASTM E561-80에서 제안한 방법과는 달리, 반복하중시 측정된 각각의 compliance를 상호비교인자로 활용하여 증가 균열길이를 간접적으로 구하고, 이 값들을 균혈성장 동안에 흡수된 비탄성 에너지를 고려한 변형에너지 해방율개념에 적용하여 구한 저항곡선의 해석으로부터 콘크리트의 불안정 균열성장 개시점을 구하였으며, 또한 굵은골재 최대수치와 시편의 두께변화가 임계파괴인성치에 미치는 영향 등을 고찰하였다.

  • PDF

Thermographic analysis of failure for different rock types under uniaxial loading

  • Kirmaci, Alper;Erkayaoglu, Mustafa
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.503-512
    • /
    • 2020
  • Mining activities focus on the production of mineral resources for energy generation and raw material requirements worldwide and it is a known fact that shallow reserves become scarce. For this reason, exploration of new resources proceeds consistently to meet the increasing energy and raw material demand of industrial activities. Rock mechanics has a vital role in underground mining and surface mining. Devices and instruments used in laboratory testing to determine rock mechanics related parameters might have limited sensing capability of the failure behavior. However, methodologies such as, thermal cameras, digital speckle correlation method and acoustic emission might enable to investigate the initial crack formation in detail. Regarding this, in this study, thermographic analysis was performed to analyze the failure behaviors of different types of rock specimens during uniaxial compressive strength experiments. The energy dissipation profiles of different types of rocks were characterized by the temperature difference recorded with an infrared thermal camera during experiments. The temperature increase at the failure moment was detected as 4.45℃ and 9.58℃ for andesite and gneiss-schist specimens, respectively. Higher temperature increase was observed with respect to higher UCS value. Besides, a temperature decreases of about 0.5-0.6℃ was recorded during the experiments of the marble specimens. The temperature change on the specimen is related to release of radiation energy. As a result of the porosity tests, it was observed that increase in the porosity rate from 5.65% to 20.97% can be associated to higher radiation energy released, from 12.68 kJ to 297.18 kJ.

Numerical simulation of reinforced concrete nuclear containment under extreme loads

  • Tamayo, Jorge Luis Palomino;Awruch, Armando Miguel
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.799-823
    • /
    • 2016
  • A finite element model for the non-linear dynamic analysis of a reinforced concrete (RC) containment shell of a nuclear power plant subjected to extreme loads such as impact and earthquake is presented in this work. The impact is modeled by using an uncoupled approach in which a load function is applied at the impact zone. The earthquake load is modeled by prescribing ground accelerations at the base of the structure. The nuclear containment is discretized spatially by using 20-node brick finite elements. The concrete in compression is modeled by using a modified $Dr{\ddot{u}}cker$-Prager elasto-plastic constitutive law where strain rate effects are considered. Cracking of concrete is modeled by using a smeared cracking approach where the tension-stiffening effect is included via a strain-softening rule. A model based on fracture mechanics, using the concept of constant fracture energy release, is used to relate the strain softening effect to the element size in order to guaranty mesh independency in the numerical prediction. The reinforcing bars are represented by incorporated membrane elements with a von Mises elasto-plastic law. Two benchmarks are used to verify the numerical implementation of the present model. Results are presented graphically in terms of displacement histories and cracking patterns. Finally, the influence of the shear transfer model used for cracked concrete as well as the effect due to a base slab incorporation in the numerical modeling are analyzed.

탄소섬유/에폭시 복합재료의 층간파괴인성에 미치는 균열진전각도의 영향 (Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials)

  • 황진호;황운봉
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.1026-1038
    • /
    • 1999
  • Interlaminar fracture toughness of carbon/epoxy composite materials has been studied under tensile and flexural loading by the use of width tapered double cantilever beam(WTDCB) and end notched flexure(ENF) specimens. This study has significantly examined the effect of various interfacial ply orientation, ${\alpha}(0^{\circ},\;45^{\circ}\;and\;90^{\circ})$ and crack propagation direction, ${\theta}(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ in terms of critical strain energy release rate through experiments. Twelve differently layered laminates were investigated. The data reduction for evaluating the fracture energy is based on compliance method and beam theory. Beam theory is used to analyze the effect of crack propagation direction. The geometry and lay-up sequence of specimens are considered various conditions such as skewness parameter, beam volume, and so on. The results show that the fiber bridging occurred due to the non-midplane crack propagation and causes the difference of fracture energy evaluated by both methods. For safer and more reliable composite structures, we obtain the optimal stacking sequence from initial fracture energy in each mode.

제올라이트/DGEBA 복합재료의 경화 동력학과 기계적 계면특성 (Cure Kinetics and Mechanical Interfacial Characteristics of Zeolite/DGEBA Composites)

  • 박수진;김영미;신재섭
    • 대한화학회지
    • /
    • 제47권5호
    • /
    • pp.472-478
    • /
    • 2003
  • 본 연구에서는 표면처리된 제올라이트에 따른 제올라이트/DGEBA의 경화 동력학과 기계적 계면특성을 고찰하였다. 경화제는 4, 4''-diamino diphenyl methane(DDM)을 사용하였으며, 제올라이트는(PZ) 15와 35 wt% KOH (15-BZ 그리고 35-BZ)로 표면처리하여 XPS와 XRD로 분석하였다. 경화 동력학은 DSC로 분석하였으며, 시편의 기계적 계면특성은 임계응력 세기인자(critical stress intensity factor, $K_{IC}$)와 임계변형에너지 방출속도(critical strain energy release rate, GIC)를 통하여 알아보았다. XPS와 XRD의 결과로부터, KOH로 표면처리된 제올라이트는 나트륨 (Na)이 칼륨(K)으로 이온교환되었으며, 표면처리로 인한 Al-O의 결합세기의 약화로 $Si_{2p}/Al{2p}$의 값이 증가하였다. 동적 DSC와 기계적 계면특성 결과로부터, 제올라이트/DGEBA 중에서 15-BZ의 경화 활성화에너지($E_a$)는 감소하였으며, $K_{IC}$$G_{IC}$는 증가하였다. 이러한 결과들은 제올라이트의 표면처리에 의해 산성도가 증가하였으며, 이렇게 증가된 산성도가 제올라이트와 에폭시 사이의 경화반응에 영향을 준 것으로 관찰된다.

산-염기 표면반응이 탄화규소/PMMA 나노복합재료의 열적·기계적 계면특성에 미치는 영향 (Roles of Acid-Base Surface Interaction on Thermal and Mechanical Interfacial Behaviors of SiC/PMMA Nanocomposites)

  • 박수진;오진석
    • Korean Chemical Engineering Research
    • /
    • 제43권5호
    • /
    • pp.632-636
    • /
    • 2005
  • 본 실험은 화학적 표면처리된 탄화규소(SiC)가 PMMA 나노복합재료의 열안정성 및 기계적 계면특성에 미치는 영향에 대하여 고찰하였다. 표면처리된 SiC의 표면특성은 산 염기도, 접촉각 측정 그리고 FT-IR을 사용하여 알아보았으며, SiC/PMMA 나노복합재료의 열안정성은 열중량 분석을 통하여 알아보았다. 또한, 기계적 계면물성은 임계응력 세기인자(critical stress intensity factor, $K_{IC}$)와 임계 변형에너지 방출속도(critical strain energy release rate, $G_{IC}$) 측정을 통해 고찰하였다. 실험결과, 산성 용액으로 표면처리한 SiC(A-SiC)의 표면 산도가 염기성(B-SiC) 또는 표면처리 하지 않은 SiC(V-SiC)보다 높았으며, 접촉각 측정 결과, 산성 용액으로 표면처리는 극성요소의 증가에 기인하는 A-SiC의 표면자유에너지를 증가시켰다. $K_{IC}$$G_{IC}$같은 기계적 계면성질은 A-SiC가 향상되었는데, 이러한 결과는 충전재와 고분자 사슬간의 산 염기 상호작용에 의한 계면결합력의 향상에 의한 것으로 판단된다.

탄소섬유 강화 에폭시 수지 복합재료의 열안정성 및 기계적 계면특성에 미치는 SiC 표면처리 영향 (Effect of Surface Treated SiC on Thermal Stability and Mechanical Interfacial Properties of Carbon Fiber/Epoxy Resin Composites)

  • 박수진;오진석;이재락;이경엽
    • Composites Research
    • /
    • 제16권3호
    • /
    • pp.25-31
    • /
    • 2003
  • 본 연구에서는 화학적 표면처리에 따른 탄화규소(SiC)의 표면특성 변화가 탄소섬유강화 에폭시 복합재료의 열안정성 및 기계적 계면물성에 미치는 영향을 조사하였다. 표면처리된 탄화규소의 표면특성은 산ㆍ염기도와 접촉각 측정을 통하여 알아보았으며, 열안정성은 TGA를 이용하여 조사하였다. 제조한 복합재료의 기계적 계면물성은 ILSS와 임계세기인자($\textrm{K}_{IC}$), 그리고 critical strain energy release rate($\textrm{G}_{IC}$)를 통하여 고찰하였다. 실험 결과 산 처리된 SiC(A-SiC)는 미처리된 SiC(V-SiC)나 염기처리된 SiC(B-SiC)에 비하여 산도가 증가하였다. 접촉각 측정 결과, 화학적 표면처리는 극성요소의 증가에 기인하는 SiC의 표면자유에너지를 증가시켰다. 이와 같은 물성들은 양극산화로 향상되어졌는데, 이는 좋은 젖음성이 최종 복합재료의 섬유와 매트릭스 사이의 계면결합력을 증가시키는데 중요한 역할을 하기 때문인 것으로 사료된다.

Modal analysis of cracked cantilever composite beams

  • Kisa, Murat;Arif Gurel, M.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.143-160
    • /
    • 2005
  • Modal analysis of cracked cantilever composite beams, made of graphite-fibre reinforced polyamide, is studied. By using the finite element and component mode synthesis methods, a numeric model applicable to investigate the vibration of cracked composite beams is developed. In this new approach, from the crack section, the composite beam separated into two parts coupled by a flexibility matrix taking into account the interaction forces. These forces are derived from the fracture mechanics theory as the inverse of the compliance matrix calculated with the proper stress intensity factors and strain energy release rate expressions. Numerical results are obtained for modal analysis of composite beams with a transverse non-propagating open crack, addressing the effects of the location and depth of the crack, and the volume fraction and orientation of the fibre on the natural frequencies and mode shapes. By means of modal data, the position and dimension of the defect can be found. The results of the study confirmed that presented method is suitable for the vibration analysis of cracked cantilever composite beams. Present technique can be easily extended to composite plates and shells.