Roles of Acid-Base Surface Interaction on Thermal and Mechanical Interfacial Behaviors of SiC/PMMA Nanocomposites

산-염기 표면반응이 탄화규소/PMMA 나노복합재료의 열적·기계적 계면특성에 미치는 영향

  • Park, Soo-Jin (Advanced Materials Div., Korea Research Institute of Chemical Technology) ;
  • Oh, Jin-Seok (Advanced Materials Div., Korea Research Institute of Chemical Technology)
  • 박수진 (한국화학연구원 화학소재연구부) ;
  • 오진석 (한국화학연구원 화학소재연구부)
  • Received : 2005.03.17
  • Accepted : 2005.10.06
  • Published : 2005.10.31

Abstract

In this work, the effect of chemical treatments on surface properties of SiC was investigated in thermal and mechanical interfacial behaviors of SiC/PMMA nanocomposites. The acid/base value, contact angles, and FT-IR analysis were performed for the study of surface characteristics of the SiC studied. The thermal stabilities of the SiC/PMMA nanocomposites were investigated by thermogravimetric analysis (TGA). Also the mechanical interfacial properties of the composites were studied in critical stress intensity factor ($K_{IC}$) and critical strain energy release rate ($G_{IC}$) measurements. As a result, the acidically treated SiC (A-SiC) had higher acid value than that of untreated SiC (V-SiC) or basically treated SiC (B-SiC). The acidic solution treatment led to an increase in surface free energy of the SiC, mainly due to the increase of its specific component. Thermal and mechanical interfacial properties of the SiC/PMMA nanocomposites, including initial decomposition temperature (IDT), $K_{IC}$, and $G_{IC}$ had been improved in the acidic treatment on SiC. This was due to the improvement in the interfacial bonding strength, resulting from the acid-base interfacial interactions between the fillers and polymeric matrix.

본 실험은 화학적 표면처리된 탄화규소(SiC)가 PMMA 나노복합재료의 열안정성 및 기계적 계면특성에 미치는 영향에 대하여 고찰하였다. 표면처리된 SiC의 표면특성은 산 염기도, 접촉각 측정 그리고 FT-IR을 사용하여 알아보았으며, SiC/PMMA 나노복합재료의 열안정성은 열중량 분석을 통하여 알아보았다. 또한, 기계적 계면물성은 임계응력 세기인자(critical stress intensity factor, $K_{IC}$)와 임계 변형에너지 방출속도(critical strain energy release rate, $G_{IC}$) 측정을 통해 고찰하였다. 실험결과, 산성 용액으로 표면처리한 SiC(A-SiC)의 표면 산도가 염기성(B-SiC) 또는 표면처리 하지 않은 SiC(V-SiC)보다 높았으며, 접촉각 측정 결과, 산성 용액으로 표면처리는 극성요소의 증가에 기인하는 A-SiC의 표면자유에너지를 증가시켰다. $K_{IC}$$G_{IC}$같은 기계적 계면성질은 A-SiC가 향상되었는데, 이러한 결과는 충전재와 고분자 사슬간의 산 염기 상호작용에 의한 계면결합력의 향상에 의한 것으로 판단된다.

Keywords

References

  1. Knox, C. E., Handbook of Composites, ed. G. Lubin, van Nostrand Reinhold, New York(1982)
  2. Schwartz, M. M., Composite Materials Handbook, McGraw- Hill, New York(1992)
  3. Park, S. J., Interfacial Forces and Fields: Theory and Applications, ed. J. P. Hsu, Marcel Dekker, New York(1999)
  4. Rio, C. D., Ojeda, M. C. and Acosta, J. L., 'Carbon Black Effect on the Microstructure of Incompatible Polymer Blends,' Eur. Polym. J., 36(8), 1687-1695(2000) https://doi.org/10.1016/S0014-3057(99)00239-6
  5. Park, S. J. and Kim, J. S., 'Role of Chemically Modified Carbon Black Surface in Enhancing Interfacial Adhesion Between Carbon Black and Rubber in a Composite System,' J. Colloid InterInterface Sci., 232(2), 311-316(2000) https://doi.org/10.1006/jcis.2000.7160
  6. Frysz, C. A. and Chung, D. D. L., 'Improving the Electrochemical Behavior of Carbon Black and Carbon Filaments by Oxidation,' Carbon, 35(8), 1111-1127(1997) https://doi.org/10.1016/S0008-6223(97)00083-3
  7. Shahidzadeh-Ahmadi, N. S., Chehimi, M. M., Khonsari, F. A., Belkacemi, N. F., Amouroux, J. and Delamar, M., 'A Physicochemical Study of Oxygen Plasma-Modified Polypropylene,' Colloid Surf., 105(2-3), 277-289(1995) https://doi.org/10.1016/0927-7757(95)03314-9
  8. Park, S. J., Seo, D. I. and Nah, C. W. 'Effect of Acidic Surface Treatment of Red Mud on Mechanical Interfacial Properties of Epoxy/Red Mud Nanocomposites,' J. Colloid Interface Sci., 251(2), 225-229(2002) https://doi.org/10.1006/jcis.2002.8336
  9. Adamson, A. W., Physical Chemistry of Surfaces, 5th ed. John Wiley, New York(1990)
  10. Israelachvili, J. N., Intermolecular and Surface Forces, 2nd ed. Academic Press, San Diego(1992)
  11. Hoecker, F. and Karger-Kocsis, J., 'Surface Energetics of Carbon Fibers and It's Effects on the Chemical Performance of CF/ EP Composites,' J. Appl. Polym. Sci., 59(1), 139-153(1996) https://doi.org/10.1002/(SICI)1097-4628(19960103)59:1<139::AID-APP19>3.0.CO;2-V
  12. Ma, K., Chung, T. S. and Good, R. J., 'Surface Energy of Thermotropic Liquid Crystalline Polyesters and Polyesteramide,' J. Polym. Sci. Polym. Phys., 36(13), 2327-2337(1998) https://doi.org/10.1002/(SICI)1099-0488(19980930)36:13<2327::AID-POLB8>3.0.CO;2-P
  13. Boehm, H. P., Diehl, E., Heck, W. and Sappok, R., 'Surface Oxides of Carbon,' Adv. Catal., 3, 669-677(1964)
  14. Park, S. J. and Kim, J. S., 'Influence of Plasma Treatment on Microstructures and Acid-Base Surface Energetics of Nanostructured Carbon Blacks: N2 Plasma Environment,' J. Colloid Interface Sci., 244(2), 336-341(2001) https://doi.org/10.1006/jcis.2001.7920
  15. Park, S. J., Seo. D. I. and Lee, J. R., 'Surface Modification of Montmorillonite on Surface Acid-Base Characteristics of Clay and Thermal Stability of Epoxy/Clay Nanocomposites,' J. Colloid Interface Sci., 251(1), 160-165(2002) https://doi.org/10.1006/jcis.2002.8379
  16. Van Oss, C. J., Interfacial Forces in Aqueous Media, Marcel Dekker, New York(1994)
  17. Horowitz, H. H. and Metzger, G., 'A New Analysis of Thermogravimetric Traces,' Anal. Chem., 35(10), 1464-1468(1963) https://doi.org/10.1021/ac60203a013
  18. Park, S. J. and H. C. Kim, 'Thermal Stability and Toughening of Epoxy Resin with Polysulfone Resin,' J. Polym. Sci., Polym. Phys., 39(1), 121-128(2001) https://doi.org/10.1002/1099-0488(20010101)39:1<121::AID-POLB110>3.0.CO;2-N
  19. Griffith, A. A., 'The Phenomena of Rupture and Flow in Solids,' Phil. Trans. R. Soc. London, 221(A), 163-198(1921) https://doi.org/10.1098/rsta.1921.0006
  20. Irwin, G. R., Handbuch Der Physik: Fracture, vol. 5, Springer Verlag, Berlin(1958)