• 제목/요약/키워드: Strain Effect

검색결과 4,562건 처리시간 0.029초

소재 크기효과를 고려한 미세가공공정 유한요소해석 (Finite Element Analysis for Micro-Forming Process Considering the Size Effect of Materials)

  • 변상민;이영석
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.544-549
    • /
    • 2006
  • In this work, we have employed the strain gradient plasticity theory to investigate the effect of material size on the deformation behavior in metal forming process. Flow stress is expressed in terms of strain, strain gradient (spatial derivative of strain) and intrinsic material length. The least square method coupled with strain gradient plasticity was used to calculate the components of strain gradient at each element of material. For demonstrating the size effect, the proposed approach has been applied to plane compression process and micro rolling process. Results show when the characteristic length of the material comes to the intrinsic material length, the effect of strain gradient is noteworthy. For the microcompression, the additional work hardening at higher strain gradient regions results in uniform distribution of strain. In the case of micro-rolling, the strain gradient is remarkable at the exit section where the actual reduction of the rolling finishes and subsequently strong work hardening take places at the section. This results in a considerable increase in rolling force. Rolling force with the strain gradient plasticity considered in analysis increases by 20% compared to that with conventional plasticity theory.

Al-Mg 합금의 고온 소성 변형 특성에 미치는 동적 변형 시효의 영향 (The Effect of Dynamic Strain Aging on the High Temperature Plastic Deformation Behaviour of Al-Mg Alloy)

  • 이상용;이정환
    • 소성∙가공
    • /
    • 제5권4호
    • /
    • pp.327-336
    • /
    • 1996
  • The effect of dynamic strain aging on high temperature deformation behaviour of the A-Mg alloy was investigated by strain rate change tests and stress relaxation tests between 20$0^{\circ}C$and 50$0^{\circ}C$. Yield point, short stress transient and periodic discontinuities on the stress-strain curve were considered as an evidence of the effect of dynamic strain aging. With this criterion two distinct strain rate-temperature regimes could be manifested. Dynamic strain aging was considered to be effective in the high temperature-low strain rate regime, whereas dynamic recovery was a dominant deformation mechanism in the low temperature-high strain rate regime. It was found that dynamic strain aging in the high temperature deformation was governed by the mechcanism of diffusion-controlled, viscous dislocation movement.

  • PDF

Seismic Analysis on Recycled Aggregate Concrete Frame Considering Strain Rate Effect

  • Wang, Changqing;Xiao, Jianzhuang;Sun, Zhenping
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권3호
    • /
    • pp.307-323
    • /
    • 2016
  • The nonlinear behaviors of recycled aggregate concrete (RAC) frame structure are investigated by numerical simulation method with 3-D finite fiber elements. The dynamic characteristics and the seismic performance of the RAC frame structure are analyzed and validated with the shaking table test results. Specifically, the natural frequency and the typical responses (e.g., storey deformation, capacity curve, etc.) from Model 1 (exclusion of strain rate effect) and Model 2 (inclusion of strain rate effect) are analyzed and compared. It is revealed that Model 2 is more likely to provide a better match between the numerical simulation and the shaking table test as key attributes of seismic behaviors of the frame structure are captured by this model. For the purpose to examine how seismic behaviors of the RAC frame structure vary under different strain rates in a real seismic situation, a numerical simulation is performed by varying the strain rate. The storey displacement response and the base shear for the RAC frame structure under different strain rates are investigated and analyzed. It is implied that the structural behavior of the RAC frame structure is significantly influenced by the strain rate effect. On one hand, the storey displacements vary slightly in the trend of decreasing with the increasing strain rate. On the other hand, the base shear of the RAC frame structure under dynamic loading conditions increases with gradually increasing amplitude of the strain rate.

부모역할 전환 후 부모로서의 긴장감이 취업모의 결혼적응에 미치는 영향과 사회적 지지의 완충효과에 관한 연구 (The influence of parental strain on the marital adjustment of employed mothers after transition to the parenthood and the buffering effect of social support)

  • 고선주
    • 한국생활과학회지
    • /
    • 제13권5호
    • /
    • pp.637-646
    • /
    • 2004
  • The purpose of this study is to examine the relation between parental strain and marital adjustment of employed mothers after their transition to the parenthood, and to investigate buffering effect of social support on the relation. The parental strain variables (physical strain and emotional strain) appear to be significant predictors of marital adjustment for employed mothers with first baby. The analysis on interaction effect indicates that social support can be a positive buffering indicator. A comparison reveals that mothers with high physical strain have significantly higher marital adjustment than those with low strain. But in the context of high social support, the difference of marital adjustment between the two mothers is reduced.

  • PDF

An asymptotic multi-scale approach for beams via strain gradient elasticity: surface effects

  • Kim, Jun-Sik
    • Multiscale and Multiphysics Mechanics
    • /
    • 제1권1호
    • /
    • pp.15-33
    • /
    • 2016
  • In this paper, an asymptotic method is employed to formulate nano- or micro-beams based on strain gradient elasticity. Although a basic theory for the strain gradient elasticity has been well established in literature, a systematic approach is relatively rare because of its complexity and ambiguity of higher-order elasticity coefficients. In order to systematically identify the strain gradient effect, an asymptotic approach is adopted by introducing the small parameter which represents the beam geometric slenderness and/or the internal atomistic characteristic. The approach allows us to systematically split the two-dimensional strain gradient elasticity into the microscopic one-dimensional through-the-thickness analysis and the macroscopic one-dimensional beam analysis. The first-order beam problem turns out to be different from the classical elasticity in terms of the bending stiffness, which comes from the through-the-thickness strain gradient effect. This subsequently affects the second-order transverse shear stress in which the surface shear stress exists. It is demonstrated that a careful derivation of a first strain gradient elasticity embraces "Gurtin-Murdoch traction" as the surface effect of a one-dimensional Euler-Bernoulli-like beam model.

Temperature effect analysis of a long-span cable-stayed bridge based on extreme strain estimation

  • Yang, Xia;Zhang, Jing;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • 제20권1호
    • /
    • pp.11-22
    • /
    • 2017
  • The long-term effect of ambient temperature on bridge strain is an important and challenging problem. To investigate this issue, one year data of strain and ambient temperature of a long-span cable-stayed bridge is studied in this paper. The measured strain-time history is decomposed into two parts to obtain the strains due to vehicle load and temperature alone. A linear regression model between the temperature and the strain due to temperature is established. It is shown that for every $1^{\circ}C$ increase in temperature, the stress is increased by 0.148 MPa. Furthmore, the extreme value distributions of the strains due to vehicle load, temperature and the combination effect of them during the remaining service period are estimated by the average conditional exceedance rate approach. This approach avoids the problem of declustering of data to ensure independence. The estimated results demonstrate that the 95% quantile of the extreme strain distribution due to temperature is up to $1.488{\times}10^{-4}$ which is 2.38 times larger than that due to vehicle load. The study also indicates that the estimated extreme strain can reflect the long-term effect of temperature on bridge strain state, which has reference significance for the reliability estimation and safety assessment.

Combined strain gradient and concrete strength effects on flexural strength and ductility design of RC columns

  • Chen, M.T.;Ho, J.C.M.
    • Computers and Concrete
    • /
    • 제15권4호
    • /
    • pp.607-642
    • /
    • 2015
  • The stress-strain relationship of concrete in flexure is one of the essential parameters in assessing the flexural strength and ductility of reinforced concrete (RC) columns. An overview of previous research studies revealed that the presence of strain gradient would affect the maximum concrete stress developed in flexure. However, no quantitative model was available to evaluate the strain gradient effect on concrete under flexure. Previously, the authors have conducted experimental studies to investigate the strain gradient effect on maximum concrete stress and respective strain and developed two strain-gradient-dependent factors k3 and ko for modifying the flexural concrete stress-strain curve. As a continued study, the authors herein will extend the investigation of strain gradient effects on flexural strength and ductility of RC columns to concrete strength up to 100 MPa by employing the strain-gradient-dependent concrete stress-strain curve using nonlinear moment-curvature analysis. It was evident from the results that both the flexural strength and ductility of RC columns are improved under strain gradient effect. Lastly, for practical engineering design purpose, a new equivalent rectangular concrete stress block incorporating the combined effects of strain gradient and concrete strength was proposed and validated. Design formulas and charts have also been presented for flexural strength and ductility of RC columns.

M-K 모델 기반의 박판금속 성형성 평가에서 물성의 영향에 대한 해석적 연구 (Analytical Study of the Effect of Material Properties on the Formability of Sheet Metals based on the M-K Model)

  • ;김석봉;허훈
    • 소성∙가공
    • /
    • 제19권7호
    • /
    • pp.393-398
    • /
    • 2010
  • This paper investigates the effect of material properties on the formability of sheet metals based on the Marciniak-Kuczynski model (M-K model). The hardening behavior of the material is modeled as the Hollomon model with the strain rate effect. The yield surfaces are constructed with Hosford79 yield function. The material properties considered in this study include the R-value, the strain hardening exponent, the strain rate hardening exponent, and the crystal structure of the material. The effect of the crystal structure on formability is roughly expressed as the change of the yield surface by varying the value of the exponent in Hosford79 yield function. Results show that the R-value affects neither the magnitude nor the shape of right hand side of forming limit diagrams (FLDs). Higher strain hardening exponent and higher strain rate hardening exponent improve the formability of sheet metals because they stabilize the forming processes.

Analysis of the dynamic confining effect of CRAC short column under monotonic loadings

  • Wang, Changqing;Xiao, Jianzhuang
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.351-363
    • /
    • 2020
  • Based on the dynamic tests of recycled aggregate concrete (RAC) short columns confined by the hoop reinforcement, the dynamic failure mechanism and the mechanical parameters related to the constitutive relation of confined recycled aggregate concrete (CRAC) were investigated thoroughly. The fracturing sections were relatively flat and smooth at higher strain rates rather than those at a quasi-static strain rate. With the increasing stirrup volume ratio, the crack mode is transited from splitting crack to slipping crack constrained with large transverse confinement. The compressive peak stress, peak strain, and ultimate strain increase with the increase of stirrup volume ratio, as well as the increasing strain rate. The dynamic confining increase factors of the compressive peak stress, peak strain, and ultimate strain increase by about 33%, 39%, and 103% when the volume ratio of hoop reinforcement is increased from 0 to 2%, but decrease by about 3.7%, 4.2%, and 9.1% when the stirrup spacing is increased from 20mm to 60mm, respectively. This sentence is rephrased as follows: When the stirrup volume ratios are up to 0.675%, and 2%, the contributions of the hoop confinement effect to the dynamic confining increase factors of the compressive peak strain and the compressive peak stress are greater than those of the strain rate effect, respectively. The dynamic confining increase factor (DCIF) models of the compressive peak stress, peak strain, and ultimate strain of CRAC are proposed in the paper. Through the confinement of the hoop reinforcement, the ductility of RAC, which is generally slightly lower than that of NAC, is significantly improved.

고압환경에서 탄소섬유/에폭시 복합재의 압축거동에 대한 연구-변형률 속도 영향 (Compressive Behavior of Carbon/Epoxy Composites under High Pressure Environment-Strain Rate Effect)

  • 이지훈;이경엽
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.148-153
    • /
    • 2004
  • It is well-known that the mechanical behavior of fiber-reinforced composites under hydrostatic pressure environment is different from that of atmospheric pressure environment. It is also known that the mechanical behavior of fiber-reinforced composites is affected by a strain rate. In this work, we investigated the effect of strain rate on the compressive elastic modulus, fracture stress, and fracture strain of carbon/epoxy composites under hydrostatic pressure environment. The material used in the compressive test was unidirectional carbon/epoxy composites and the hydrostatic pressures applied was 270㎫. Compressive tests were performed applying three strain rates of 0.05%/sec, 0.25%/sec, and 0.55%/sec. The results showed that the elastic modulus increased with increasing strain rate while the fracture stress was little affected by the strain rate. The results also showed that the fracture strain decreased with increasing strain rate.