DOI QR코드

DOI QR Code

An asymptotic multi-scale approach for beams via strain gradient elasticity: surface effects

  • Kim, Jun-Sik (Department of Mechanical System Engineering, Kumoh National Institute of Technology)
  • Received : 2015.05.01
  • Accepted : 2015.10.06
  • Published : 2016.01.25

Abstract

In this paper, an asymptotic method is employed to formulate nano- or micro-beams based on strain gradient elasticity. Although a basic theory for the strain gradient elasticity has been well established in literature, a systematic approach is relatively rare because of its complexity and ambiguity of higher-order elasticity coefficients. In order to systematically identify the strain gradient effect, an asymptotic approach is adopted by introducing the small parameter which represents the beam geometric slenderness and/or the internal atomistic characteristic. The approach allows us to systematically split the two-dimensional strain gradient elasticity into the microscopic one-dimensional through-the-thickness analysis and the macroscopic one-dimensional beam analysis. The first-order beam problem turns out to be different from the classical elasticity in terms of the bending stiffness, which comes from the through-the-thickness strain gradient effect. This subsequently affects the second-order transverse shear stress in which the surface shear stress exists. It is demonstrated that a careful derivation of a first strain gradient elasticity embraces "Gurtin-Murdoch traction" as the surface effect of a one-dimensional Euler-Bernoulli-like beam model.

Keywords

References

  1. Mindlin, R.D. (1964), "Micro-structure in linear elasticity", Arch. Rat. Mech. Anal., 16(1), 51-78. https://doi.org/10.1007/BF00248490
  2. Mindlin, R.D. (1965), "Second gradient of strain and surface-tension in linear elasticity", Int. J. Solids Struct., 1(4), 417-438. https://doi.org/10.1016/0020-7683(65)90006-5
  3. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  4. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer-Verlag New York, Inc.
  5. Kim, W. and Cho, M. (2010), "Surface effect on the self-equilibrium state and size-dependent elasticity of FCC thin films", Modelling Simul. Mater. Sci. Eng., 18(8), 085006. https://doi.org/10.1088/0965-0393/18/8/085006
  6. Peddieson, J., Buchanan, G.G. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0
  7. Wang, C.M., Zhang, Y.Y., Ramesh, S.S. and Kitipornchai, S. (2006), "Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 39(17), 3904-3909. https://doi.org/10.1088/0022-3727/39/17/029
  8. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  9. Kim, J.-S. (2014a), "Application of nonlocal models to nano beams, part I: axial length scale effect", J. Nanosci. Nanotechnol., 14(10), 7592-7596. https://doi.org/10.1166/jnn.2014.9749
  10. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  11. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solid., 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  12. Ma, H.M., Gao, X.-L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
  13. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Rat. Mech. Anal., 57(4), 291-323. https://doi.org/10.1007/BF00261375
  14. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
  15. Lim, C.W. and He, L.H. (2004), "Size-dependent nonlinear response of thin elastic films with nano-scale thickness", Int. J. Mech. Sci., 46(11), 1715-1726. https://doi.org/10.1016/j.ijmecsci.2004.09.003
  16. Lu, P., He, L.H., Lee, H.P. and Lu, C. (2006), "Thin plate theory including surface effects", Int. J. Solid Struct., 43(16), 4631-4647. https://doi.org/10.1016/j.ijsolstr.2005.07.036
  17. Kim, J.-S. (2014b), "Application of nonlocal models to nano beams, part II: thickness length scale effect", J. Nanosci. Nanotechnol., 14(10), 7597-7602. https://doi.org/10.1166/jnn.2014.9750
  18. Cho, M., Choi, J. and Kim, W. (2009), "Continuum-based bridging model of nanoscale thin film considering surface effects", Jap. J. Appl. Phys., 48(2R), 020219. https://doi.org/10.1143/JJAP.48.020219
  19. Kim, W., Rhee, S.Y. and Cho, M. (2012), "Molecular dynamics-based continuum models for the linear elasticity of nanofilms and nanowires with anisotropic surface effects", J. Mech. Mater. Struct., 7(7), 613-639. https://doi.org/10.2140/jomms.2012.7.613
  20. Lazar, M., Maugin, G.A. and Aifantis, E.C. (2006), "Dislocations in second strain gradient elasticity", Int. J. Solid Struct., 43(6), 1787-1817. https://doi.org/10.1016/j.ijsolstr.2005.07.005
  21. Polizzotto, C. (2012), "A gradient elasticity theory for second-grade materials and higher order inertia", Int. J. Solid Struct., 49(15), 2121-2137. https://doi.org/10.1016/j.ijsolstr.2012.04.019
  22. Polizzotto, C. (2003), "Gradient elasticity and nonstandard boundary conditions", Int. J. Solids Struct., 40(26), 7399-7423. https://doi.org/10.1016/j.ijsolstr.2003.06.001
  23. Polizzotto, C. (2015), "A unifying variational framework for stress gradient and strain gradient elasticity theories", Euro. J. Mech. A/Solid., 49, 430-440. https://doi.org/10.1016/j.euromechsol.2014.08.013
  24. Di Paola, M., Pirrotta, A. and Zingales, M. (2010), "Mechanically-based to non-local elasticity: Variational principles", Int. J. Solid Struct., 47(5), 539-548. https://doi.org/10.1016/j.ijsolstr.2009.09.029
  25. Askes, H. and Aifantis, E.C. (2011), "Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedure, finite element implementations and new results", Int. J. Solid Struct., 48(13), 1962-1990. https://doi.org/10.1016/j.ijsolstr.2011.03.006
  26. Kim, J.-S., Cho, M. and Smith, E.C. (2008), "An asymptotic analysis of composite beams with kinematically corrected end effects", Int. J. Solid Struct., 45(7), 1954-1977. https://doi.org/10.1016/j.ijsolstr.2007.11.005
  27. Kim, J.-S. (2009), "An asymptotic analysis of anisotropic heterogeneous plates with consideration of end effects", J. Mech. Mater. Struct., 4(9), 1535-1553. https://doi.org/10.2140/jomms.2009.4.1535
  28. Kim, J.-S. and Wang, K.W. (2011), "On the asymptotic boundary conditions of an anisotropic beam via virtual work principle", Int. J. Solid Struct., 48(16-17), 2422-2431. https://doi.org/10.1016/j.ijsolstr.2011.04.016