• Title/Summary/Keyword: Strain Control

Search Result 2,294, Processing Time 0.031 seconds

Difference of Gray Mold Severity at Roses Caused by Botrytis cinerea Strains (잿빛곰팡이병원균 Botrytis cinerea 균주 종류별 장미 발병 정도의 차이)

  • Hwang, Kyu-Hyon;Hong, Seung-Min;Lee, Young-Soon;Lee, Hyun-Ju;Seo, Myeong-Whoon
    • Research in Plant Disease
    • /
    • v.25 no.1
    • /
    • pp.16-21
    • /
    • 2019
  • Botrytis cinerea is the pathogen for a gray mold generating problems during the cultivation and transportation of roses. But there is little information about the difference of the symptom severity caused by gray mold on rose varieties and pathogen strains. 16 strains were collected from the rose cultivation area to confirm the degree of disease occurrence against strains and each variety. Collected 16 strains were identified based on the sequences analysis of ITS region of ribosomal DNA by using specific primers. The sequence analysis was performed by comparing the sequences to find a difference. To confirm the difference in disease occurrence for each strains, the difference was classified from 0 to 5 stages using charmant variety as a control. The data was confirmed through Kruskal-Wallis ANOVA. The result showed the significant difference in the pathogenicity caused by strains. WNG6_5 showed the lowest pathogenicity with 0.24 and WNG6_3 showed the highest with 3.20. The difference between two strains were almost 3.0. In addition, nine varieties of roses were more investigated with three strains such as the strains of WNG6_5, Hwa_1, and WNG6_3. The result showed that the Love Letter variety showed resistance and the Ice Bear variety was sensitive to three strains. Taken together, this study showed the significant difference by the interactions of rose varieties and gray mold strains.

Evaluation of the Effect of Oriental Medicinal Herbs with Growth Factors on Bone Development using the SD Strain Rat Model in the Growth Period (뼈 발달에 관한 성장인자를 가진 한약재가 성장기 흰쥐 동물모델에 미치는 영향)

  • Sim, Jae-Won;Ahn, Hee-Young;Sim, So-Yeon;Kim, Hee-Young;Cho, Yong-Ju;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.29 no.5
    • /
    • pp.614-620
    • /
    • 2019
  • The purpose of this study was to examine the growth plate, femoral bone length, bone mineral density, and blood composition in various experimental animals fed with oriental medicinal herbs containing growth factors. First, the lengths of the bone growth plates of the positive control (PC) group (fed with Astragalus membranaceus) and the Gh-199 and Sh-188 groups were increased when compared to group N. The Gh-199 group showed a greater increase in bone growth when compared with the PC group. In terms of the femoral bone length and bone mineral density, the effect of both Gh-199 and Sh-188 powders were as good as those of the PC group, and the Gh-199 powder showed a positive effect. Conversely, in the PC group, unlike the Gh-199 and Sh-188 groups, the aspartate aminotransferase(AST) and alanine aminotransferase(ALT) activities in the blood were increased, indicating that A. membranaceus is toxic to the body. Both the PC and Sh-188 groups also showed higher insulin-like growth factor-1(IGF-1) activity when compared with the Gh-199 group. Overall, the bone growth plate, femoral bone length, and bone mineral density measurements, and the blood analysis showed positive results in the group treated with Gh-199, and no specific toxicity of the herbal medicine in the body was evident.

Plant Growth Promotion and Biocontrol Potential of Various Phytopathogenic Fungi Using Gut Microbes of Allomyrina dichotoma Larva (장수풍뎅이 유충의 장내 미생물을 이용한 다양한 식물 균류병의 생물적 방제 및 생장촉진)

  • Kim, Joon-Young;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.26 no.4
    • /
    • pp.210-221
    • /
    • 2020
  • This research was executed to select beneficial antagonists from digestive organ of Allomyrina dichotoma larva that can be put on environment friendly control against phytopathogenic fungi. We screened 38 bacterial strains inhibiting mycelial growth against eight plant pathogens through dual culture assay. The 10 strains among 38 bacterial strains were selected as beneficial microbes showing antifungal activity against Botrytis cinerea, Plasmodiophora brassicae, Colletotrichum acutatum and Phytophthora capsici through under greenhouse pot trials. The 10 bacterial strains that shown strongest antifungal activity were classified into 3 genera and 10 species, and identified as the genus Bacillus (DM146, DM152, DH2, and DH16), Paenibacillus (DF30, DH14, and DM142) and Streptomyces (DF137, DM48, and DH92) by morphological characteristics and 16s rRNA gene sequence. The 10 bacterial strains had solubilizing activity of insoluble phosphates, production of IAA (indole-3-acetic acid), β-1,3-glucanase and protease. Among the 10 bacterial strains, DM152 strain was produced significant enhancement of all growth parameters of chili pepper and tomato seedlings under greenhouse condition. Thus, this study demonstrated that gut microbes of Allomyrina dichotoma larva will be useful as a potential biocontrol agent against plant pathogens and biofertilizer.

Function and Molecular Ecology Significance of Two Catechol-Degrading Gene Clusters in Pseudomonas putida ND6

  • Shi, Sanyuan;Yang, Liu;Yang, Chen;Li, Shanshan;Zhao, Hong;Ren, Lu;Wang, Xiaokang;Lu, Fuping;Li, Ying;Zhao, Huabing
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.259-271
    • /
    • 2021
  • Many bacteria metabolize aromatic compounds via catechol as a catabolic intermediate, and possess multiple genes or clusters encoding catechol-cleavage enzymes. The presence of multiple isozyme-encoding genes is a widespread phenomenon that seems to give the carrying strains a selective advantage in the natural environment over those with only a single copy. In the naphthalene-degrading strain Pseudomonas putida ND6, catechol can be converted into intermediates of the tricarboxylic acid cycle via either the ortho- or meta-cleavage pathways. In this study, we demonstrated that the catechol ortho-cleavage pathway genes (catBICIAI and catBIICIIAII) on the chromosome play an important role. The catI and catII operons are co-transcribed, whereas catAI and catAII are under independent transcriptional regulation. We examined the binding of regulatory proteins to promoters. In the presence of cis-cis-muconate, a well-studied inducer of the cat gene cluster, CatRI and CatRII occupy an additional downstream site, designated as the activation binding site. Notably, CatRI binds to both the catI and catII promoters with high affinity, while CatRII binds weakly. This is likely caused by a T to G mutation in the G/T-N11-A motif. Specifically, we found that CatRI and CatRII regulate catBICIAI and catBIICIIAII in a cooperative manner, which provides new insights into naphthalene degradation.

Molecular Mechanism of ABC Transporter Mdr49A Associated with a Positive Cross-Resistance in Transgenic Drosophila (형질전환 초파리를 이용한 Mdr49A 유전자의 살충제 교차저항성 기능 구명)

  • Seong, Keon Mook;Pittendrigh, Barry R.
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.341-348
    • /
    • 2020
  • The ATP-binding cassette (ABC) transporter superfamily represents the largest transmembrane protein that transports a variety of substrates across extra- and intra-cellular membranes. In insects, the ABC transporter proteins play crucial roles in insecticide resistance. To date, no studies have investigated the involvement of ABC transporter gene for cross-resistance to insecticide chemistries. Here, we studied such possible mechanisms against six conventional insecticides using transgenic Drosophila melanogaster strains carrying Mdr49 transcript variant A. For the 91-R and 91-C strains of Drosophila melanogaster, although they have a common origin, 91-R has been intensely selected with DDT for over 60 years, while 91-C has received no insecticide selection. Our transgenic analyses showed that overexpression of 91-R-MDR49 transcript variant A along with three amino acid variations can yield a relatively low degree of cross-resistance to carbofuran (2.0~6.7-fold) and permethrin (2.5~10.5-fold) but did not show cross-resistance to abamectin, imidacloprid, methoxychlor, and prothiofos as compared to the Gal4-driver control strain without transgene expression. These results indicate that the overexpression of Mdr49A in itself leads to a cross-resistance and three amino acid changes have additional effects on positive cross-resistance to carbofuran and permethrin.

Optimization of Medium to Improve Protease Production Using Response Surface Methodology by Bacillus amyloliquefaciens SRCM115785 (반응표면분석법을 이용한 Bacillus amyloliquefaciens SRCM115785의 protease 활성증가를 위한 배지 최적화)

  • Yang, Hee Gun;Ha, Gwangsu;Ryu, Myeong Seon;Park, Se Won;Jeong, Ho Jin;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.761-770
    • /
    • 2021
  • In this study, the optimal medium composition for enhancing protease production was established by the Bacillus strain isolated from Makgeolli, a traditional fermented food, using the response surface methodology. B. amyloliquefaciens SRCM115785 was selected as the protease producer by productivity analysis and identified by 16S rRNA gene sequencing. Plackett-Burman design (PBD) was introduced to analyze the effect of each component on protease production among the 11 selected medium components. As a result, glucose, yeast extract, and beef extract were finally selected as factors for enhancing protease production. Central composite design (CCD) analysis was designed as a method to determine the optimal concentration of each component for protease production and the concentration of each medium composition for maximum protease production was predicted to glucose 6.75 g/l, yeast extract 12.42 g/l and beef extract 17.48 g/l. The suitability of the experimental model was proved using ANOVA analysis and as a result of quantitative analysis to prove this, the amount of increase was 230.47% compared to the LB medium used as a control. Through this study, the optimization of medium composition for enhancing protease production was established, and based on this, it is expected that it can be efficient use of protease as an industrial enzyme.

Evaluation of Acaricidal Effect Against Two-spotted Spider Mite Collected from Strawberry in Greenhouse (딸기 시설 하우스 점박이응애에 대한 살비 효과 평가)

  • Kwon, D.H.;Ahn, Y.K.;Hong, K.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.2
    • /
    • pp.135-146
    • /
    • 2020
  • In the strawberry cultivation areas and domestic farms, two-spotted spider mites are the most serious pests. It decreases the product yield due to the direct feeding of chlorophyll by the mites resulting in reduced photosynthetic ability of host plant. In this study, a simplified acaricidal effect evaluation system (SAEES) was employed to choose the effective acaricidal products among 10 items based on leaf-dipping bioassay methods. SAEES had the advantage of being able to screen four commercial products with three replications at the same time in the recommended concentration. The susceptible strains (SL_YS) showed a high mortality rate of about 90-100%, whereas the mortality of local strains was differed by each acaricides. It suggests that the acaricide responses of field populations might differ due to spray frequencies and acaricide product. An efficacy index (0.8-1.0) was determined based on the mortality of susceptible strain, which would allow the most effective commercial products to be selected by the range of this index. In summary, SAEES will enable the selection of effective commercial products and contribute to increasing control against T. urticae in strawberries.

Rapid Cell Death Phenotype of Streptococcus mutans under Prolonged Growth Conditions (장시간 생장 조건에서 Streptococcus mutans의 급격한 세포사 표현형 분석)

  • Kim, Jeong Nam
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1072-1078
    • /
    • 2021
  • The oral pathogen Streptococcus mutans is considered a major causative agent of dental caries in humans. The use of dental hygiene products, including toothpaste and mouthwash, is used for caries control. However, food intake can lead to the recurrence of oral microorganisms. This study aimed to explore why this bacterium dies so quickly during prolonged incubation and to assess whether this growth characteristic is closely associated with the secretion of metabolic products. Notably, the number of live S. mutans cells rapidly declined after 24 hr during the entire period tested, whereas the number of Escherichia coli cells, an indicator strain, remained steady over the same period. To test whether the S. mutans supernatants contained possible signals that accelerated the death of neighbor cells, we obtained the individual supernatants at the above time points. Following pH neutralization, the cells in which the supernatant was supplemented with glucose grew well. However, pH adjustment alone could not fully recover cell growth in conditions in which the supernatant was supplemented, with or without glucose. These phenotypes of S. mutans may be associated with signaling, not only resulting from nutrient depletion. The findings on the survival phenotype of S. mutans provide new insights into cell-cell communication in the biology of this bacterium.

Characterization of exopolysaccharide-producing lactic acid bacteria from Taiwanese ropy fermented milk and their application in low-fat fermented milk

  • Ng, Ker-Sin;Chang, Yu-Chun;Chen, Yen-Po;Lo, Ya-Hsuan;Wang, Sheng-Yao;Chen, Ming-Ju
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.281-289
    • /
    • 2022
  • Objective: The aim of this study was to characterize the exopolysaccharides (EPS)-producing lactic acid bacteria from Taiwanese ropy fermented milk (TRFM) for developing a clean label low-fat fermented milk. Methods: Potential isolates from TRFM were selected based on the Gram staining test and observation of turbid suspension in the culture broth. Random amplified polymorphic DNA-polymerase chain reaction, 16S rRNA gene sequencing, and API CHL 50 test were used for strain identification. After evaluation of EPS concentration, target strains were introduced to low-fat milk fermentation for 24 h. Fermentation characters were checked: pH value, acidity, viable count, syneresis, and viscosity. Sensory evaluation of fermented products was carried out by 30 volunteers, while the storage test was performed for 21 days at 4℃. Results: Two EPS-producing strains (APL15 and APL16) were isolated from TRFM and identified as Lactococcus (Lc.) lactis subsp. cremoris. Their EPS concentrations in glucose and lactose media were higher than other published strains of Lc. lactis subsp. cremoris. Low-fat fermented milk separately prepared with APL15 and APL16 reached pH 4.3 and acidity 0.8% with a viable count of 9 log colony-forming units/mL. The physical properties of both products were superior to the control yogurt, showing significant improvements in syneresis and viscosity (p<0.05). Our low-fat products had appropriate sensory scores in appearance and texture according to sensory evaluation. Although decreasing viable cells of strains during the 21-day storage test, low-fat fermented milk made by APL15 exhibited stable physicochemical properties, including pH value, acidity, syneresis and sufficient viable cells throughout the storage period. Conclusion: This study demonstrated that Lc. lactis subsp. cremoris APL15 isolated from TRFM had good fermentation abilities to produce low-fat fermented milk. These data indicate that EPS-producing lactic acid bacteria have great potential to act as natural food stabilizers for low-fat fermented milk.

Stiffness Reduction Effect of Vertically Divided Reinforced Concrete Shear Walls Under Cyclic Loading (반복하중을 받는 수직분할된 철근콘크리트 전단벽의 강성저감효과)

  • Hwangbo, Dong-Sun;Son, Dong-Hee;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.103-110
    • /
    • 2022
  • The purpose of this study is to experimentally evaluate the stiffness and strength reduction according to the reinforcing bar details of the vertically divided reinforced concrete shear walls. To confirm the effect of reducing strength and stiffness according to vertical division, four real-scale specimens were fabricated and repeated lateral loading tests were performed. As a result of the experiment, it was confirmed that the strength and stiffness were decreased according to the vertical division. In particular, as the stiffness reduction rate is greater than the strength reduction rate, it is expected that safety against extreme strength can be secured when the load is redistributed according to vertical division. As a result of checking the crack pattern, a diagonal crack occurred in the wall subjected to compression control among the divided walls. It was confirmed that two neutral axes occurred after division, and the reversed strain distribution appeared in the upper part, showing the double curvature pattern. In future studies, it is necessary to evaluate the stiffness reduction rate considering the effective height of the wall, to evaluate additional variables such as wall aspect ratio, and to conduct analytical studies on various walls using finite element analysis.