• Title/Summary/Keyword: Straight length

Search Result 514, Processing Time 0.029 seconds

Extraction and Bioassay of Allelochemicals in Jerusalem Artichoke

  • Sungwook Chae;Lee, Ho-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.4
    • /
    • pp.309-316
    • /
    • 2001
  • Helianthus tuberosus has been known to inhibit the growth of weeds and other plants sharing its habitat. This study was conducted to identify the allelochemicals of Helianthus tuberosus which were extracted with water and solvents. Aqueous extracts of leaf, stem, root, tuber and tuber peel of Helianthus tuberosus except tuber did not show significant differences in phytotoxicity to alfalfa seedlings. It was considered that Helianthus tuberosus contained fewer or less potential water-soluble substances that were toxic to alfalfa. Methanol extract of leaves of Helianthus tuberosus was sequentially partitioned in increasing polarity with n-hexane, ethylacetate and n-butanol. Each extract had a yield of 148, 12, 15.7 and 9.5g, respectively. Inhibitory effects on germination of alfalfa seeds treated with four fractions were not significantly different. But the significant reductions on hypocotyl length were observed for all the solvent extracts. Among the four fractions, the ethylacetate fraction showed the most significant inhibition effect on bioassay with alfalfa. Further separation of the active ethylacetate fraction by open column chromatography led to the 25 subfractions. In bioassay of each sub-fraction with alfalfa seeds, sub-fraction No. 13 showed the most inhibitory effect on seedling growth. $^1$H NMR and gas chromatography-mass spectrometry analysis revealed that sub-fraction No. 13 was the mixture of straight-chain saturated fatty acids.

  • PDF

Estimation of Discharge Coefficient for Triangle Shape Labyrinth Weir (삼각형 래버린스 위어의 유량계수 산정)

  • Song, Jai-Woo;Lee, Jin-Eun;Im, Jang-Hyuk
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.87-93
    • /
    • 2009
  • The labyrinth weir can be defined that the plane shape of overflow part is not straight line and is a kind of weir having overflow length increased by changing its plane shape. Recently, the labyrinth weir can be widely applied to various hydraulic facilities such as dam spillway, irrigation facilities, and canal structures by increasing precipitation. This study was performed to analyze the hydraulic characteristics according to triangle labyrinth weir using hydraulic model experiments and finally estimate the discharge coefficients for triangle labyrinth weirs. The formulae of discharge coefficient provided in this study, which make it feasible to calculate the overflow rate by a coefficient of correlation. sum of residuals, MAPE(Mean Absolute Percentage Error), are expected to be widely applied to design of hydraulic facilities such as dam spillway and irrigation system.

A Study on the Heat Transfer Performances in Sintered Pipes (소결 코팅 파이프의 열전달 성능에 관한 연구)

  • Park, Ki-Ho;Lee, Ki-Woo;Kim, Seong-Il;Jeong, Dae-Heon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.436-439
    • /
    • 2008
  • This paper is to research the heat transfer performance of the sintered pipe. Recently, oil prices is to be 127 $ per barrel, we expect higher costs this summer. We promote alternative fuels, after oil and gasoline prices reached record highs. The governments have made efforts to avoid future crisis by continuing the move toward renewable energy and energy saving. In this paper, we have fabricated a sintered pipe, the heat transfer performance of sintered pipe is achieved experimentally. The pipe is copper tube of outer diameter of 15.88 mm, the length of the pipe is 800 mm. Based on the experimental results, it is shown the overall heat transfer coefficient of sintered pipe is increased as compared with that of a straight pipe, is equal as compared with that of a spiral pipe. The overall heat transfer coefficient was $0.075{\sim}0.09\;kW/^{\circ}C$

  • PDF

Study on the Structure Optimization and the Operation Scheme Design of a Double-Tube Once-Through Steam Generator

  • Wei, Xinyu;Wu, Shifa;Wang, Pengfei;Zhao, Fuyu
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1022-1035
    • /
    • 2016
  • A double-tube once-through steam generator (DOTSG) consisting of an outer straight tube and an inner helical tube is studied in this work. First, the structure of the DOTSG is optimized by considering two different objective functions. The tube length and the total pressure drop are considered as the first and second objective functions, respectively. Because the DOTSG is divided into the subcooled, boiling, and superheated sections according to the different secondary fluid states, the pitches in the three sections are defined as the optimization variables. A multi-objective optimization model is established and solved by particle swarm optimization. The optimization pitch is small in the subcooled region and superheated region, and large in the boiling region. Considering the availability of the optimum structure at power levels below 100% full power, we propose a new operating scheme that can fix the boundaries between the three heat-transfer sections. The operation scheme is proposed on the basis of data for full power, and the operation parameters are calculated at low power level. The primary inlet and outlet temperatures, as well as flow rate and secondary outlet temperature are changed according to the operation procedure.

A Study of the Distortional Effect on Curved Box Girder Bridge (곡선박스거더교의 뒤틀림효과에 대한 연구)

  • Nguyen, Van Ban;Han, Taek-Hee;Kim, Sung-Nam;Kang, Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.525-530
    • /
    • 2007
  • Although just developed in recent years, curved box girder has widely used in modern highway system due to their load resistance capacity as well as aesthetic considerations. According to recent literature reviews on curved box girder designs, distortional load was not considered as much as it deserves to be. In practice, the effect of distributional force is very small in straight bridge systems but yet unknown how it is in curved bridge systems. For the reason, this paper will show up an extensive parametric study on distortional behavior of curved box girder with trapezoidal section. Based on Dabrowski formulas, using finite element method, various bridges were investigated. In this study, following parameters will be included: span length, curvature radius, section height, section width, and internal section angle (web slope). From the obtained results, some initial geometric parameters are proposed for curved box girder bridges.

  • PDF

Crystal growth and characteristics of lysozyme crystals

  • Kojima, Kenichi
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.3-3
    • /
    • 2002
  • Many studies on crystal growth mechanisms of the hen egg-white lysozyme protein crystals have mainly performed by optical microscopy and atomic force microscopy (AFM). As results, two types of growth mechanisms, which are a two-dimensional nucleation mechanism and a spiral growth mechanism, were identified. However, there was no direct evidence of grown-in screw dislocations at the spiral sites. We first observed the screw dislocations in tetragonal lysozyme crystals using synchrotron X-ray topography. In addition, to confirm the characteristics of dislocations, we have observed some elastic constants in lysozyme crystals in terms of the sound velocity measurement by pulse echo methods. Tetragonal hen egg-white lysozyme crystals were grown by the concentration gradient method. The crystals were grown in test tubes, with an inner diameter of 8 ㎜ and 80 ㎜ in length, held vertically. The test tubes were kept at 23C for 2 weeks. The maximum size of crystals were 3×3×4 ㎟. The high quality crystals were examined by Laue topography with a water filter using synchrotron radiation. Figure is a X-ray topograph. Several straight screw dislocations were observed. We also determined Burgers vector to be a [110] direction. The measurement of sound velocity was performed by the digital signal processing method. the crystals were placed in stainless steel vessel, which was filled with lysozyme solution used for crystal growth. We observed the longitudinal sound velocity along the [110] direction in the tetragonal is obtained to be 1817 ㎧. Therefore, Young modulus and shear modulus were evaluated to be 2.70 Gpa and 1.02 Gpa, respectively, if we assumed Poisson ratio is 0.33. These results will be discussed at the meeting.

  • PDF

A Study on the Portrait of Nongae (논개사당의 영정복식에 관한 연구)

  • 이순자
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.4
    • /
    • pp.319-335
    • /
    • 2002
  • Nongae was the official Kinye(관기) who had exhisted, her portrait was enshrined at an ancestral tablet hall beside Choksukloo. This portrait of Nongae was a work of a painter, Un Ho-Kim. In any case, a study on the costume of the portrait of one person must be taken the costume of the period. This study investigates the character of clothing style in King Sunjo 26(1593) and in her present portrait. And so, her portrait who was enshrined at the place didn't agree with it's clothing in King Sunjo 26(1593) The results of this study are as follows : The portrait of Nongae took the costume style of the beginning of about 1910. and so this style was different from the style of costume, King Sunjo 26(1593). The style of costume, King Sunjo 26(1593) : Jacket : It's jacket was long(near hip) and broad, it's sleeve length was long, it's form was a straight line. Skirt : It's skirt was very long. It's silhouette was formed a soft line The costume of the figure in this picture in wrong from historical point of view. And so, the costume of Nongae in the portrait must adjust it in the clothing style of about 1593.

  • PDF

Effect of Swirl Flow Disturbance on Uncertainty of Flow Rate Measurement by Venturi (선회유동 교란에 따른 벤투리 유량측정의 불확실성 해석)

  • Lee, Jung-Ho;Yoon, Seok-Ho;Yu, Cheong-Hwan;Park, Sang-Jin;Chung, Chang-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.6
    • /
    • pp.18-25
    • /
    • 2009
  • Venturi has long been an attractive method of measuring flow rate in a variety of engineering applications since pressure loss is relatively small compared with other measuring methods. The current study focuses on making detailed uncertainty estimations as the upstream flow disturbance affects uncertainty levels of the flow rate measurement. Upstream flow disturbance can be determined by 9 different swirl generators. Measurement uncertainty of flow rate has been estimated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard. The results of flow rate uncertainty analysis show that the case with systematic error has higher than that without systematic error. Especially the result with systematic error exhibits that the uncertainty of flow rate was gradually increased by swirl flow disturbance. The uncertainty of flow rate measurement can be mainly affected by differential pressure and discharge coefficient. Flow disturbance can be also reduced by increasing of the upstream straight length of Venturi.

Manufacturing and Temperature Measurements of a Sodium Heat Pipe

  • Lee, Byeong-In;Lee, Seong-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1533-1540
    • /
    • 2001
  • A high-temperature sodium stainless steel heat pipe was fabricated and its performance has been investigated. The working fluid was sodium and it was sealed inside a straight tube container made of stainless steel. The amount of sodium occupied approximately 20% of the total volume of the heat pipe and its weight was 65.7gram. The length of a stainless steel container is 1002mm and its outside diameter is 25.4mm. Performance tests were carried out in a room air condition under a free convective environment and the measured temperatures are presented. The start-up behavior of the heat pipe from a frozen state was investigated for various heat input values between 600W and 1205W. In steady state, axial temperature distributions of a heat pipe were measured and its heat transfer rates were estimated in the range of vapor temperature from 50$0^{\circ}C$ to 63$0^{\circ}C$. It is found that there are small temperature differences in the vapor core along the axial direction of a sodium heat pipe for the high operating temperatures. But for the range of low operating temperatures there are large temperature drops along the vapor core region of a sodium heat pipe, because a small vapor pressure drop makes a large temperature drop. The transition temperature was reached more rapidly in the cases of high heat input rate for the sodium heat pipe.

  • PDF

Performance Characteristics of Water-Chilling Heat Pump Using CO2 on the Variation of Secondary Fluid Conditions (2차 유체 조건 변화에 대한 CO2용 수냉식 열펌프의 성능 특성에 관한 연구)

  • Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.543-551
    • /
    • 2007
  • The performance characteristics of water-chilling heat pump using $CO_2$ with respect to variation of inlet temperature and mass flow rate of secondary fluid was investigated experimentally. An experimental apparatus is consisted of a compressor, a gas cooler, an expansion valve, an evaporator and a liquid receiver. All heat exchangers used in the test rig are counter-flow-type heat exchangers with concentric dual tubes, which ate made of copper. The gas cooler and the evaporator consist of 6 and 4 straight sections respectively arranged in parallel, each has 2.4 m length. The experimental results were summarized as the followings : As inlet temperature of secondary fluid in the gas cooler increases from $10^{\circ}C$ to $40^{\circ}C$, the compressor work, heating capacity and heating COP were varied to 37.8%, -13%, -35.9%, respectively. The heating capacity, compressor work, heating COP were turned into 23.3%, 6.42%, 13.1%, respectively when ass flow rate of secondary fluid in the evaporator increases from 70 g/s to 150 g/s. The above tendency is similar with performance variation with respect to temperature variation of secondary fluid in the conventional vapor compression cycle.