• Title/Summary/Keyword: Straight Beam Element

Search Result 63, Processing Time 0.018 seconds

The finite element model research of the pre-twisted thin-walled beam

  • Chen, Chang Hong;Zhu, Yan Fei;Yao, Yao;Huang, Ying
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.389-402
    • /
    • 2016
  • Based on the traditional mechanical model of thin-walled straight beam, the paper makes analysis and research on the pre-twisted thin-walled beam finite element numerical model. Firstly, based on the geometric deformation differential relationship, the Saint-Venant warping strain of pre-twisted thin-walled beam is deduced. According to the traditional thin-walled straight beam finite element mechanical model, the finite element stiffness matrix considering the Saint-Venant warping deformations is established. At the same time, the paper establishes the element stiffness matrix of the pre-twisted thin-walled beam based on the classic Vlasov Theory. Finally, by calculating the pre-twisted beam with elliptical section and I cross section and contrasting three-dimensional solid finite element using ANSYS, the comparison analysis results show that pre-twisted thin-walled beam element stiffness matrix has good accuracy.

Finite Element Vibration Analysis of a Curved Pipe Conveying Fluid with Uniform Velocity (일정속도 유체를 운반하는 곡관의 유한요소 진동해석)

  • Lee, Seong-Hyeon;Jeong, Weui-Bong;Seo, Young-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.10
    • /
    • pp.1049-1056
    • /
    • 2008
  • A method for the vibration analysis of curved beam conveying fluid with uniform velocity was presented. The dynamics of curved beam is based on the inextensible theory. Both in-plane motion and out-of-plane motion of curved beam were discussed. The finite element method was formulated to solve the governing equations. The natural frequencies calculated by the presented method were compared with those by analytical solution, straight beam theories and Nastran. As the velocity of fluid becomes larger, the results by straight beam model became different from those by curved beam model. And it was shown that the curved beam element should be used to predict the critical velocity of fluid exactly. The influence of fluid velocity on the frequency response function was also discussed.

Stress Analysis of Curved Portions of Pipe Loops Used in Ships and Offshore Structures (선박 해양구조물 파이프 루프 곡선부의 응력 해석)

  • Park, Chi-Mo;Bae, Byoung-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.52-57
    • /
    • 2011
  • Most ships and offshore structures are equipped with a variety of pipes, which inevitably contain curved portions. While it has been a usual practice to conduct bending stress analyses of these curved pipes using the straight-beam theory, this paper adopts two different types of finite elements, straight-beam elements and two-dimensional shell elements, for finite element analyses of a variety of curved pipes. It then compares the analysis results for two different types of elements to determine correction factors, which can be used to transform the bending displacements and bending stresses obtained by straight-beam elements to those obtainable by two-dimensional shell elements. The paper ends with a practical suggestion on how to efficiently use these correction factors to estimate the combined axial and normal stresses in a curved portion of a pipe.

Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams (비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도)

  • 김문영;윤희택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF

Exact Free Vibration Analysis of Straight Thin-walled Straight Beams (직선 박벽보에 대한 엄밀한 자유진동해석)

  • 김문영;윤희택;나성훈
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.358-365
    • /
    • 2000
  • For the general case of loading conditions and boundary conditions, it is very difficult to obtain closed form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. In consequence, most of previous finite element formulations are introduce approximate displacement fields to use shape functions as Hermitian polynomials, and so on. The Purpose of this study is to presents a consistent derivation of exact dynamic stiffness matrices of thin-walled straight beams, to be used ill tile free vibration analysis, in which almost types of boundary conditions are exist An exact dynamic element stiffness matrix is established from governing equations for a uniform beam element of nonsymmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequency is evaluated for the thin-walled straight beam structure, and the results are compared with analytic solutions in order to verify the accuracy of this study.

  • PDF

Analysis of curved multicell box girder assemblages

  • Razaqpur, A. Ghani;Li, Hangang
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.33-49
    • /
    • 1997
  • A method of analysis is proposed for curved multicell box girder grillages. The method can be used to analyze box girder grillages comprising straight and/or curved segments. Each segment can be modelled by a number of beam elements. Each element has three nodes and the nodal degrees of freedom (DOF) consist of the six DOF for a conventional beam plus DOF to account for torsional warping, distortion, distortional warping, and shear lag. This element is an extension of a straight element that was developed earlier. For a more realistic analysis of the intersection regions of non-colinear box girder segments, the concept of a rigid connector is introduced, and the compatibility requirements between adjoining elements in those regions are discussed. The results of the analysis showed good agreement with the shell finite element results, but the proposed method of analysis needs a fraction of the time and effort compared to the shell finite element analysis.

Locking-free Straight Beam Element by a Modified Transverse Displacement Field (수정 횡변위장에 의한 강성과잉이 없는 직선 보 요소)

  • 이팔갑;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2287-2297
    • /
    • 1992
  • The Formulation of a new Hermite straight beam element to eliminate the shear locking is presented. All the kinematic variables in Timoshenko beam are reinterpreted by the consideration of equilibrium equations together. It shows that when the modified transverse displacement field is used the Timoshenko beam looks apparently the same as the Euler beam. The element is formulated for the modified transverse displacement field to have the same interpolation scheme as that in the Hermite element. Transformation Matrix which relates a modified nodal vector with nonmodified one is also introduced to deal with general boundary conditions. Several examples are demonstrated and discussed for the purpose of verification of the concepts employed. The solutions obtained reveal that the element describes of the beam quite correctly, showing no locking and that it is also applicable to the analysis of both thin and thick beams.

The linear-elastic stiffness matrix model analysis of pre-twisted Euler-Bernoulli beam

  • Huang, Ying;Zou, Haoran;Chen, Changhong;Bai, Songlin;Yao, Yao;Keer, Leon M.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.617-629
    • /
    • 2019
  • Based on the finite element method of traditional straight Euler-Bernoulli beams and the coupled relations between linear displacement and angular displacement of a pre-twisted Euler-Bernoulli beam, the shape functions and stiffness matrix are deduced. Firstly, the stiffness of pre-twisted Euler-Bernoulli beam is developed based on the traditional straight Euler-Bernoulli beam. Then, a new finite element model is proposed based on the displacement general solution of a pre-twisted Euler-Bernoulli beam. Finally, comparison analyses are made among the proposed Euler-Bernoulli model, the new numerical model based on displacement general solution and the ANSYS solution by Beam188 element based on infinite approach. The results show that developed numerical models are available for the pre-twisted Euler-Bernoulli beam, and which provide more accurate finite element model for the numerical analysis. The effects of pre-twisted angle and flexural stiffness ratio on the mechanical property are investigated.

A Study on the Structural Analysis of Curved Portions of Pipe Loops Used in Ships (선박용 파이프 루프 곡선부의 구조해석에 관한 연구)

  • Park, Chi-Mo;Bae, Byoung-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.88-93
    • /
    • 2010
  • Many pipes that are arranged longitudinally in ships have loops at intervals to prevent the failure of the pipes as they absorb large portions of the axial load caused by the bending of the hull girder and/or thermal loads when the pipes are carrying very hot fluids. Since the loops are curved at corners, an efficient method for conducting the structural analyses of these curved portions is required. In this paper, a pipe loop was analyzed by an analytical method and by the finite-element method in four different ways, i.e., based on straight-beam elements, curved-beam elements, 2-D shell elements, and 3-D solid elements. The results of the five analyses were compared to check the validity of the current curved-beam theory. The paper includes some suggestions on how to analyze the pipe loops efficiently.

Study on the dynamic behaviors of curved beam structure using spectral element (스펙트럴 요소를 이용한 곡선 보 구조물의 동적거동 해석)

  • 이준근;이우식;박철희
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.83-88
    • /
    • 1996
  • The significance of spectral element method is that it can treat the mass and stiffness distribution exactly in contrast to the conventional finite element method, and therefore the dynamic behaviors within each spectral element can be obtained exactly. The present study provides the derivation of the spectral element of a curved beam, while the previous ones presented that of a straight structure. Further, in order to verify the derived spectral element, the natural frequencies of a ring by the spectral element method are compared with those by the analytical method and those by the FEM. From the verification, derived spectral element is admissible. And the dynamic behaviors of curved beam are simulated by using the derived spectral element of a curved beam.

  • PDF