• Title/Summary/Keyword: Storm load

Search Result 116, Processing Time 0.025 seconds

Characteristics of Biochemical Oxygen Demand Export from Paddy Fields during Storm and Non-storm Period and Evaluation of Unit Load (강우시와 비강우시 BOD 유출 특성 조사 및 원단위 평가)

  • Choi, Dongho;Cho, Sohyun;Hwang, Taehee;Kim, Youngsuk;Jung, Jaewoon;Choi, Woojung;Park, Hyunkyu;Yoon, Kwangsik
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.531-537
    • /
    • 2017
  • The biologic Oxygen Demand (BOD) is a reliable and generally accepted indicator of water pollution by organic pollutants. Accordingly, estimation of BOD export from paddies carries important implications fwith regard to water management in rural areas. In this study, hydrology and BOD concentration were monitored during the period 2008 through 2012, in an effort to understand the characteristics of BOD export from paddy fields. The findings demonstrated that BOD load by rainfall above 50 mm. occupied about 50 % of total load, whereas the load by less than ten mm. rainfall occupied about 29 % of the total load during periods of stormy activity. It therefore seems that it could be possible to reduce the BOD load up to 29 % during storm periods, when drainage control conducted for rainfall less than ten mm.(an amount which is relatively easy to manage). The documented mean loads of storm and non-storm were $17.1kg\;ha^{-1}\;yr^{-1}$ and $11.2kg\;ha^{-1}\;yr^{-1}$, respectively. The BOD load during the significant rainfall period was similar to the renewed unit load by NIER (2014). However, there were substantial differences between unit load and actual load when the non-storm load was incorporated into the BOD load estimation from paddy fields. In view of the foregoing, it is felt that, the non-storm load needs to be further considered and managed for the successful implementation of Total Maximum Daily Load (TMDL) program.

Determination of Interception Flow by Pollution Load Budget Analysis in Combined Sewer Watershed (II) - Establishment of Intercepting Capacity and Reduction Goal of Overflow Pollution Load - (오염부하 물질수지 분석을 통한 합류식 하수관거 적정 차집용량 결정(II) - 차집용량과 월류오염부하 삭감목표 설정 -)

  • Lee, Doojin;Shin, EungBai
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.557-564
    • /
    • 2005
  • The objective of this study is to evaluate a criteria of intercepting capacity and a reduction goal of overflow pollution load in combined sewer system. In the current criteria of intercepting capacity in the domestic sewage facility standard, it is known that three times of peak sewage (Q) in dry period or runoff flow by 2mm/hr is not appropriate since the intercepted flow is estimated by runoff and show different result even in the same watershed. Though a reduction goal of overflow pollution load can be determined from 1) same level of storm-water runoff pollution load in separated storm sewer, 2) less than 5% sewage load in dry weather period, by the domestic sewage facility standard, the simulated results from storm-water model show large differences between two criteria. While it is predicted that sewage pollution load standard three time larger than separated storm sewer standard in high population density and urbanized area, it is shown that separate storm sewer standard larger than sewage pollution load standard in middle population density and developing area. Accordingly, it is proposed that more reasonable intercepting flow and reduction goal of overflows pollution load should be established to minimize discharging pollution load in combined sewer systems. For the purpose, a resonable standard has to be amended by pollution load balance considering the characteristics of a watershed for generation, collection, treatment, and discharging flow.

A Study on Beach Profile Change in the Consideration of Undertow (Undertow를 고려한 해빈단면지형 변화에 관한 연구)

  • 손창배;김창제
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.147-154
    • /
    • 1999
  • A Numerical model is developed in order to predict cross-shore beach profile change. In this model it is assumed that sediment transport is generated by waves(bed load transport suspended load transport) and undertow which is defined as offshore directional steady flow in the surf zone. In addition wave tank experiments which reproduce storm-surge were performed. By comparing resulting profile of calculation with experiments, the applicability of this method is verified.

  • PDF

Efficient Locality-Aware Traffic Distribution in Apache Storm (Apache Storm에서 지역성을 고려한 효율적인 트래픽 분배)

  • Son, Siwoon;Lee, Sanghun;Moon, Yang-Sae
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.12
    • /
    • pp.677-683
    • /
    • 2017
  • Apache Storm is a representative real-time distributed processing system, which is able to process data streams quickly over distributed servers. Storm currently provides several stream grouping methods to distribute data traffic to multiple servers. Among them, the shuffle grouping may cause a processing delay problem and the local-or-shuffle grouping used to solve the problem may cause the problem of concentrating the traffic on a specific node. In this paper, we propose the locality-aware grouping to solve the problems that may arise in the existing Storm grouping methods. Experimental results show that the proposed locality-aware grouping is considerably superior to the existing shuffle grouping and the local-or-shuffle grouping. These results show that the new grouping is an excellent approach considering both the locality and load balancing which are limitations of the existing Storm.

Derivation of the Risk-Safety Factor Relation for Optimal Storm Sewer Design in Urban Area (도시지역의 최적 배수관망 설계를 위한 Risk Safety Factor 관계의 설정)

  • Kim, Mun Mo;Lee, Won Hwan;Cho, Won Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.129-134
    • /
    • 1992
  • This paper presents the relation between risk and safety factor for optimal storm sewer design in urban area. For reliability analysis of the storm sewer, uncertainty of the various parameters of constituting equation determining the capacity and load of storm" sewer is considered and risk is determined. In this study, reliability analysis method is applied to Seongsan detention reservoir basin which area is $381,000m^2$ Darcy-Weisbach equation is used for determining capacity of the storm sewer and rational formula is used for determining load. Safety factor representing ratio of the sewer capacity and design flowrate is calculated, and relating with risk. Then risk and safety factor with return period is obtained and it is used for optimal design of storm sewer.

  • PDF

Characteristics of Storm Runoff Loadings from a Paddy Field Area (강우시 광역논으로부터의 유출부하 특성)

  • 오승영;김진수;오광영
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.753-758
    • /
    • 1999
  • Concentration and discharge have been intensively monitored at the drainage canal in a paddy field area during storm-periods. Among 4 storm runoffs, the No. 2 and No. 3 runoff was in the fertilizer application period. The specific load-specific discharge equation L=aQ\ulcorner have different characteristics for the pollutants. The coefficient of b generally shows values of more than 1 for T-N, about 1 for COD\ulcorner, and less than 1 for T-P. For same specific discharge, No. 2 runoff shows higher specific load than other runoffs. For the coefficient of determination of the L-Q equation, COD\ulcorner is higher than T-N and T-P. The mean concentration of direct runoff, significantly depending on the storm events, is 0.6 to 8.3mg/ιfor T-N, 0.05 to 0.51 mg/ι for T-P, and 10.0 to 18.3 mg/ι for COD\ulcorner.

  • PDF

Climate change and design wind load concepts

  • Kasperski, Michael
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.145-160
    • /
    • 1998
  • In recent years, the effects of a possible climate change have been discussed in regard to wind loading on buildings and structures. Simple scenarios based on the assumption of global warming suggest an increase of storm intensities and storm frequencies and a possible re-distribution of storm tracks. Among recent publications, some papers seem to verify these scenarios while others deny the influence of climatic change. In an introductory step, the paper tries to re-examine these statements. Based on meteorological observations of a weather station in Germany, the existence of long-term trends and their statistical significance is investigated. The analysis itself is based on a refined model for the wind climate introducing a number of new basic variables. Thus, the numerical values of the design wind loads used in modern codes become more justified from the probabilistic point of view.

A Prediction of Crack Propagation Rate under Random Loading (랜덤하중에서의 균열전파속도 추정법에 관한 연구)

  • 표동근;안태환
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.115-123
    • /
    • 1994
  • Under variable amplitude loading conditions, retardation or accelerated condition of fatigue crack growth occurs with every cycle, Because fatigue crack growth behavior varied depend on load time history. The modeling of stress amplitude with storm loading acted to ships and offshore structures applied this paper. The crack closure behavior examine by recording the variation in load-strain relationship. By taking process mentioned above, fatigue crack growth rate, crack length, stress intensity factor, and crack closure stress intensity factor were obtained from the stress cycles of each type of storm ; A(6m), B(7m), C(8m), D(9m), E(11m) and F(15m) which was wave height. It showed that the good agreement with between the experiment results and simulation of storm loads. So this estimated method of crack propagtion rate gives a good criterion for the safe design of vessels and marine structure.

  • PDF

Reconfiguration of Apache Storm for InfiniBand Communications (InfiniBand RDMA 통신을 위한 Apache Storm의 재구성)

  • Yang, Seokwoo;Son, Siwoon;Moon, Yang-Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.8
    • /
    • pp.297-306
    • /
    • 2018
  • In this paper, we address how to apply Apache Storm, a distributed stream processing framework, to InfiniBand, a high performance communication device. An easy way to run Storm on InfiniBand is to simply use IPoIP (IP over InfiniBand). However, this method causes a serious CPU load on the node, which is caused by frequent context switches and buffer copies. To solve this problem, we propose a new communication method using InfiniBand's Remote Direct Memory Access (RDMA) function in Storm. First, we design and implement RJ-Netty (RDMA/JXIO Netty), a new framework that replaces Netty, the legacy framework, to exploit RDMA functionality. Second, we reimplement the related classes so that Storm can use both existing Netty and new RJ-Netty. Third, we extend the JXIO server functionality so as to support multi-threading to maximize the performance of RJ-Netty. Experimental results show that the proposed RJ-Netty significantly reduces CPU load while improving message throughput compared to IPoIB as well as Ethernet. This paper is the first attempt to run Apache Storm on InfiniBand, and we believe that it is an excellent research result that improves the performance of Storm by using InfiniBand RDMA.

Probability of performance failure of storm sewer according to accumulation of debris (토사 적체에 따른 우수관의 성능불능확률)

  • Kwon, Hyuk-Jae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.509-517
    • /
    • 2010
  • Statistical distribution of annual maximum rainfall intensity of 18 cities in Korea was analyzed and applied to the reliability model which can calculate the probability of performance failure of storm sewer. After the analysis, it was found that distribution of annual maximum rainfall intensity of 18 cities in Korea is well matched with Gumbel distribution. Rational equation was used to estimate the load and Manning's equation was used to estimate the capacity in reliability function to calculate the probability of performance failure of storm sewer. Reliability analysis was performed by developed model applying to the real storm sewer. It was found that probability of performance failure is abruptly increased if the diameter is smaller than certain size. Therefore, cleaning the inside of storm sewer to maintain the original diameter can be one of the best ways to reduce the probability of performance failure. In the present study, probability of performance failure according to accumulation of debris in storm sewer was calculated. It was found that increasing the amount of debris seriously decrease the capacity of storm sewer and significantly increase the probability of performance failure.