• Title/Summary/Keyword: Storm Water

Search Result 830, Processing Time 0.028 seconds

Estimation of Nonpoint Source Pollutant Loads for Rural Watershed by AvSWAT (AvSWAT를 이용한 농촌유역 비점원 오염물질 부하량 예측)

  • Kim, Jin-Ho;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Han, Kuk-Heon;Ruy, Jong-Su;Kim, Suk-Cheol;Yun, Sun-Gang;Lee, Jeong-Taek;Kwun, Soon-Kuk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.12-17
    • /
    • 2007
  • This study was conducted to evaluate the characteristics of nonpoint source pollutants discharge from a small rural watershed. A typical rural area in Gongju City, Korea, was selected as the research site. Water quality and quantity in streams and rainfall samples were analyzed periodically from May to October 2005. Pollutant loads were estimated from a nonpoint source pollution model (AvSWAT, Arcview Soil and Water Assessment Tool). During the rainy season, from June 26 to 30 September 2005 and the dry season, before 26 June and after 30 September 2005, biological oxygen demands and chemical oxygen demands accounted for 91.3% and 93.7% of annual load, respectively, while total-N and total-P were 97.1% and 91.1% of annual load, respectively. The observed stream flow was $66.5m^3sec^{-1}$, while simulation stream flow was $66.2m^3sec^{-1}$. That can be assumed that simulation can be used to estimate the stream flow without practical measurement. However, the runoff trend following the occurrence of a storm event was not recorded properly.

Application of dual drainage system model for inundation analysis of complex watershed (복합유역의 침수해석을 위한 이중배수체계 유출모형의 적용)

  • Lee, Jaejoon;Kwak, Changjae;Lee, Sungho
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.301-312
    • /
    • 2019
  • The importance of the dual drainage system model has increased as the urban flood damage has increased due to the increase of local storm due to climate change. The dual drainage model is a model for more accurately expressing the phenomena of surface flow and conduit flow. Surface runoff and pipe runoff are analyzed through the respective equations and parameters. And the results are expressed visually in various ways. Therefore, inundation analysis results of dual drainage model are used as important data for urban flood prevention plan. In this study, the applicability of the COBRA model, which can be interpreted by combining the dual drainage system with the natural watershed and the urban watershed, was investigated. And the results were compared with other dual drainage models (XP-SWMM, UFAM) to determine suitability of the results. For the same watershed, the XP-SWMM simulates the flooding characteristics of 3 types of dual drainage system model and the internal flooding characteristics due to the lack of capacity of the conduit. UFAM showed the lowest inundation analysis results compared with the other models according to characteristics of consideration of street inlet. COBRA showed the general result that the flooded area and the maximum flooding depth are proportional to the increase in rainfall. It is considered that the COBRA model is good in terms of the stability of the model considering the characteristics of the model to simulate the effective rainfall according to the soil conditions and the realistic appearance of the flooding due to the surface reservoir.

Analysis on the Runoff Reduction Efficiency of Non Point Pollutants in Animal Feeding Area Using Artificial Reservoir (인공 저류지를 이용한 축산 지역 비점오염물질 유출 저감 효율 분석)

  • Oa, Seong-Wook
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.417-423
    • /
    • 2018
  • It analyzed the efficiency of the runoff reduction of artificial reservoir by analyzing the influent and effluent of reservoir located downstream of the livestock area. Production of non point pollutants in livestock feeding areas, which is located at steep slope land, was mainly due to first flushes. Suspended Solid concentration of influent increased due to amount of rainfall, and T-P also increased over four times and 30 % of total nitrogen increased on average compared to those of dry season. While the concentration of nitrate nitrogen showed little variation, ammonia nitrogen increased over two times. The storage style nonpoint reduction facility showed the highest removal efficiency of 53 % for total phosphorus in dry weather, when the removal efficiency was 37 % for suspended solids, 10% for organic compounds, and 5 % for total nitrogen. Since algal bloom grows due to eutrophication in summer, the minus removal efficiencies of nitrogen concentration through the reservoir occurred with high frequency. Removal efficiency decreased during rainfall, showing 60 % for supended solids, and 22 % for total phosphorus. While having over nine times of capacity than the standard of non-point removal facility from Ministry of Environment, it was impounded with water during rainy season, showing not enough nonpoint removal efficiency, which indicates that maintenance is also an important factor to the nonpoint removal efficiency.

Coarse Grid Wave Hindcasting in the Yellow Sea Considering the Effect of Tide and Tidal Current (조석 및 조류 효과를 고려한 황해역 광역 파랑 수치모의 실험)

  • Chun, Hwusub;Ahn, Kyungmo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.286-297
    • /
    • 2018
  • In the present study, wave measurements at KOGA-W01 were analyzed and then the numerical wind waves simulations have been conducted to investigate the characteristics of wind waves in the Yellow sea. According to the present analysis, even though the location of the wave stations are close to the coastal region, the deep water waves are prevailed due to the short fetch length. Chun and Ahn's (2017a, b) numerical model has been extended to the Yellow Sea in this study. The effects of tide and tidal currents should be included in the model to accommodate the distinctive effect of large tidal range and tidal current in the Yellow Sea. The wave hindcasting results were compared with the wave measurements collected KOGA-W01 and Kyeockpo. The comparison shows the reasonable agreements between wave hindcastings and measured data, however the model significantly underestimate the wave period of swell waves from the south due to the narrow computational domain. Despite the poorly prediction in the significant wave period of swell waves which usually have small wave heights, the estimation of the extreme wave height and corresponding wave period shows good agreement with the measurement data.

Simulating flood inflow to multipurposed dam on 2020.8.7.~8.8 storm with ONE model (ONE 모형에 의한 2020.8.7.~8.8. 호우의 댐 유입량 모의)

  • Noh, Jaekyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.120-120
    • /
    • 2021
  • 2020년 8월 7일부터 8월 8일까지 호우는 용담댐, 섬진강댐, 합천댐 하류 유역의 막대한 침수피해를 일으켰다. 이들 다목적 댐 유입량의 신뢰도 높은 모의는 홍수기 댐 운영 및 하류하천의 홍수 해석에 필수다. 여기서는 일 유출 모의 기반으로 개발된 ONE 모형을 10분 단위, 1시간 단위로 적용한 결과를 제시하고자 한다. 보통 홍수모의는 사상별로 실시하지만, 여기서는 1월1일부터 12월 31일까지 연속으로 모의한 결과에서 해당 홍수사상 결과를 제시하였다. 3개 다목적 댐의 홍수사상은 8월6일부터 8월 10일까지 5일간으로 설정하였다. 유역면적은 용담댐, 섬진강댐, 합천댐, 각각 930km2, 763km2, 925km2, 총강우량은 각각 490.7mm, 451.9mm, 452.4mm, 첨두유입량은 10분 단위는 각각 4,872.7m3/s, 3,533.7.0m3/s, 2,776.0m3/s, 1시간 단위는 각각 4,394.9m3/s, 3,401.8m3/s, 2,745.6m3/s, 총유입량은 각각 3억8,836만m3, 3억1,324만m3, 3억2,816만m3였다. 첨두유입량 상대오차가 0일 때의 매개변수로 모의한 결과를 제시하며, 총유입량 상대오차(Vq), R2, RMSE, NSE 등으로 평가하였다. 용담댐 결과는 10분 단위 경우 최대면적강우량 7.3mm, 첨두유입량 4,872.4m3/s, 총유입량 3억 8,138만m3, Vq 1.9%, R2 0.968, RMSE 207.347, NSE 0.978였고, 1시간의 경우 최대면적강우량 29.6mm, 첨두유입량 4394.9m3/s, 총유입량 4억157만m3, Vq -8.4%, R2 0.970, RMSE 186.962, NSE 0.982였다. 섬진강댐 결과는 10분 단위 경우 최대면적강우량 9.2mm, 첨두유입량 3,533.3m3/s, 총유입량 2억7,223만m3, Vq 18.4%, R2 0.885, RMSE 808.296, NSE 0.925였고, 1시간의 경우 최대 면적강우량 37.9mm, 첨두유입량 3401.6m3/s, 총유입량 2억7,029만m3, Vq 13.7%, R2 0.907, RMSE 285.544, NSE 0.936였다. 합천댐 결과는 10분 단위 경우 최대면적강우량 5.5mm, 첨두유입량 2,776.2m3/s, 총유입량 3억3,667만m3, Vq -2.7%, R2 0.941, RMSE 191.896, NSE 0.965였고, 1시간의 경우 최대면적강우량 17.0mm, 첨두유입량 2,746.7m3/s, 총유입량 3억1,333만m3, Vq 4.5%, R2 0.965, RMSE 140.739, NSE 0.981였다. 이상 ONE 모형으로 10분, 1시간 단위의 댐 홍수 유입량 모의결과는 높은 신뢰도를 나타냈다.

  • PDF

Numerical Simulation on Seabed-Structure Dynamic Responses due to the Interaction between Waves, Seabed and Coastal Structure (파랑-지반-해안구조물의 상호작용에 기인하는 해저지반과 구조물의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Baek, Dong-Jin;Kim, Do-Sam;Kim, Tae-Hyung;Bae, Ki-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.49-64
    • /
    • 2014
  • Seabed beneath and near the coastal structures may undergo large excess pore water pressure composed of oscillatory and residual components in the case of long durations of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. If the liquefaction occurs in the seabed, the structure may sink, overturn, and eventually fail. Especially, the seabed liquefaction behavior beneath a gravity-based structure under wave loading should be evaluated and considered for design purpose. In this study, to evaluate the liquefaction potential on the seabed, numerical analysis was conducted using 2-dimensional numerical wave tank. The 2-dimensional numerical wave tank was expanded to account for irregular wave fields, and to calculate the dynamic wave pressure and water particle velocity acting on the seabed and the surface boundary of the structure. The simulation results of the wave pressure and the shear stress induced by water particle velocity were used as inputs to a FLIP(Finite element analysis LIquefaction Program). Then, the FLIP evaluated the time and spatial variations in excess pore water pressure, effective stress and liquefaction potential in the seabed. Additionally, the deformation of the seabed and the displacement of the structure as a function of time were quantitatively evaluated. From the analysis, when the shear stress was considered, the liquefaction at the seabed in front of the structure was identified. Since the liquefied seabed particles have no resistance force, scour can possibly occur on the seabed. Therefore, the strength decrease of the seabed at the front of the structure due to high wave loading for the longer period of time such as a storm can increase the structural motion and consequently influence the stability of the structure.

Effects of Environmental Factors on the Bacterial Community in Eutrophic Masan Reservoir (이화학적 수질인자가 부영양화된 마산저수지의 세균분포에 미치는 영향)

  • 남귀숙;손형식;차미선;조순자;이광식;이상준
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.95-101
    • /
    • 2003
  • The total bacterial numbers, Eubacterial community structures and environmental factors which affect bacterial community were estimated monthly using DAPI and fluorescent in situ hybridization monthly, from June to November 2000 to evaluate the correlation between the bacterial community and environmental factors in eutrophic agricultural Masan reservoir in Asan. Average water temperatures varied from 12.3 to $27.5^{\circ}C$, pH 7.5 to 9.0, DO 7. I~12.8 mg/L, COD 6.4~13.0 mg/L, chlorophyll a 30.5~99.0 mg/㎥, SS 7.S~25.7 mg/L, TN 1.748~3.543 mg/L., and TP 0.104~0.581 mg/L, respectively. Total bacterial numbers showed high ranges from 0.4 to 9.6$\times$ $10^{6}$ cells/ml, and these indicated the mesotrophic or eutrophic state. The ratio of Eubacteria to total bacteria was 67.6-88.0%, which was higher than that in other reservoir. The relationships of total bacteria and Eubacteria community were more significant with organic nitrogen (Org-N), and organic phosphorus (Org-P) than with water temperature. Proteobacteria groups showed strongly significant relationships with Org-P and Org-N and significant relationships with water temperature, conductivity, COD, and inorganic nitrogen. C-F group was the most significant with Org-N, and HGC group with water temperature. However, relationships of Chl-a, pH, DO and SS showed no significance with any bacterial community. These results were different from other studies, because of the specific characteristics of Masan reservoir such as old, shallow and eutrophic states. The seasonal variation of bacterial community in Masan reservoir does not seem to depend on phytoplankton dynamics but on storm event and organic materials from watershed and the sediment of reservoir.

A Study on Drainage Facilities in Mountainous Urban Neighborhood Parks - The Cases of Baebongsan Park and Ogeum Park in Seoul - (산지형 도시근린공원의 배수시설 특성 - 서울시 배봉산공원과 오금공원을 사례로 -)

  • Lee, Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.5
    • /
    • pp.80-92
    • /
    • 2010
  • The purpose of this study was to analyze drainage facilities in mountainous urban neigbborhood parks--Baebongsan Park and Ogeum Park--in Seoul. Based on an analysis of existing drainage facilities, the volume of storm water runoff (VSW), the runoff rate of open channels(ROC), and the detention capacity of open charmels(DCOC) by each drainage watershed, the coefficient of runoff rate(CROC) as evaluated to be relevant between VSW and ROC and the coefficient of the detention capacity of open channe1s(CDCOC) as evaluated with DCOC compared to VSW were estimated and analyzed by parks and by watersheds. The results are as follows: 1. The total drainage area of Baebongsan Park was 34.13ha including surface runoff area(15.05ha; 44.09%), open channel area(l4.60ha; 42.78%), and natural waterway area(4.48ha; 13.13%). The total drainage area of Ogeum Park was 20.39ha including open channel area (10.14ha; 49.73%), ridge-side gutter area(7.17ha; 35.16%), surface runoff area (2.52ha; 12.36%), and natural waterway area (0.56ha; 2.75%). In Baebongsan Park, the portion of surface runoff was comparatively higher while the portion of artificial drainage area was higber in Ogeum Park. 2. In Baebongsan Park drainage districts were largely divided: VSW was $7.28m^3/s$ in total(average $0.23m^3/s$). Comparatively, tbe VSW in Ogeum Park, including smaller drainage districts, was $4.37m^3/s$ in total(average $0.12m^3/s$). 3. The ROC of Baebmgsan Park was $11.58m^3/s$ in total(average $0.77m^3/s$) and the CROC was 5.26, while in Ogeum Park, the ROC was $15.40m^3/s$(average $0.34m^3/s$) and tbe CROC was 8.87 higher than that of Baebongsan Because the size and slope of the open channel in Baebongsan Park was higher, the average ROC was larger, while tbe CROC of Ogeum Park was higher than that of Baebongsan Park, for the VSW in Ogeum Park was comparatively lower. 4. The DCOC in Baebongsan Park was $554.54m^3$ and the average of CDCOC was 179.83. That of Ogeum Park was $717.74m^3$ and the average of the CDCOC was 339.69, meaning that the DCOC of Ogeum Park was so much higber that drainage facilities in Ogeum Park were built intensively. This study was focused m the capacity of the drainage facilities in mountainous urban neighborhood parks by using the CROC to evaluate relevance between VSW and ROC and the CDCOC to evaluate the DCOC as compared with VSW. The devised methodology and coefficient for evaluating drainage facilities in mountainous urban neighborhood parks may he universally applicable through additional study. Further study m sustainable urban drainage systems for retaining rainwater in a reservoir and for enhancing ecological value is required in the near future.

Influence of Joint Distribution of Wave Heights and Periods on Reliability Analysis of Wave Run-up (처오름의 신뢰성 해석에 대한 파고_주기결합분포의 영향)

  • Lee Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.178-187
    • /
    • 2005
  • A reliability analysis model f3r studying the influence of joint distribution of wave heights and periods on wave un-up is presented in this paper. From the definition of failure mode related to wave run-up, a reliability function may be formulated which can be considered uncertainties of water level. In particular, the reliability analysis model can be directly taken into account statistical properties and distributions of wave periods by considering wave period in the reliability function to be a random variable. Also, variations of wave height distribution conditioned to mean wave periods can be taken into account correctly. By comparison of results of additional reliability analysis using extreme distributions with those resulted from joint distribution of wave height and periods, it is found that probabilities of failure evaluated by the latter is larger than those by the former. Although the freeboard of sloped-breakwater structures can be determined by extreme distribution based on the long-term measurements, it may be necessary to investigate additionally into wave run-up by using the present reliability analysis model formulated to consider joint distribution of a single storm event. In addition, it may be found that the effect of spectral bandwidth parameter on reliability index may be little, but the effect of wave height distribution conditioned to mean wave periods is straightforward. Therefore, it may be confirmed that effects of wave periods on the probability of failure of wave run-up may be taken into account through the conditional distribution of wave heights. Finally, the probabilities of failure with respect to freeboard of sloped-breakwater structures can be estimated by which the rational determination of crest level of sloped-breakwater structures may be possible.

Computation of Criterion Rainfall for Urban Flood by Logistic Regression (로지스틱 회귀에 의한 도시 침수발생의 한계강우량 산정)

  • Kim, Hyun Il;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.713-723
    • /
    • 2019
  • Due to the climate change and various rainfall pattern, it is difficult to estimate a rainfall criterion which cause inundation for urban drainage districts. It is necessary to examine the result of inundation analysis by considering the detailed topography of the watershed, drainage system, and various rainfall scenarios. In this study, various rainfall scenarios were considered with the probabilistic rainfall and Huff's time distribution method in order to identify the rainfall characteristics affecting the inundation of the Hyoja drainage basin. Flood analysis was performed with SWMM and two-dimensional inundation analysis model and the parameters of SWMM were optimized with flood trace map and GA (Genetic Algorithm). By linking SWMM and two-dimensional flood analysis model, the fitness ratio between the existing flood trace and simulated inundation map turned out to be 73.6 %. The occurrence of inundation according to each rainfall scenario was identified, and the rainfall criterion could be estimated through the logistic regression method. By reflecting the results of one/two dimensional flood analysis, and AWS/ASOS data during 2010~2018, the rainfall criteria for inundation occurrence were estimated as 72.04 mm, 146.83 mm, 203.06 mm in 1, 2 and 3 hr of rainfall duration repectively. The rainfall criterion could be re-estimated through input of continuously observed rainfall data. The methodology presented in this study is expected to provide a quantitative rainfall criterion for urban drainage area, and the basic data for flood warning and evacuation plan.