• Title/Summary/Keyword: Storm Drainage

Search Result 129, Processing Time 0.029 seconds

A Study on Hydrologic Analysis and Some Effects of Urbanization on Design Flow of Urban Storm Drainage Systems (1) (도시 하수도망의 수문학적인 평가와 설계확률유량의 점대화 성향에 관한 연구(제1보))

  • 강관원;서병하;윤용남
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.27-34
    • /
    • 1981
  • The design flow of the urban strom drainage systems has been assessed largely on a basis of empirical relations between rainfall and runoff, and the rational formula has been widely used for the cities in our country. In order to estimate it more accurately, the urban runoff simulation model based on the RRl method has been developed and applied to the sample basin in this study. The rainfall hyetograph of the design stromfor the design flow has been obtained by the determination of the total rainfall and the temporal distributions of that rainfall. The total rainfall has been assessed from the empirical formula of rainfall intensity and the temporal distribution of that rainfall determined on the basis of Huff's method from the historical rainfall data of the basin. The virtual inflow hydrograph to each inlet of the basin has been constructed by computing the series of discharges in each time increment, using design strom hyetograph and time-area diagram. The actual runoff hydrograph at the basin outlet has been computed from the virtual inflow hydrographs by developing a relations between discharge and storage for the watershed. The discharge data for verification of the simulated runoff hydrograph are not available in the sample basin and so the sensitivity analysis of the simulation model has not been possible. The peak discharge for the design of drainage systems has been estimated from the computed runoff hydrograph at the basin outlet and compared to thatl obtained form the rational formula.

  • PDF

Pollutant Load Characteristics of a Rural Watershed of Juam Lake (주암호 농촌 소유역 오염부하특성)

  • Han, Kuk-Heon;Yoon, Kwang-Sik;Jung, Jae-Woon;Yoon, Suk-Gun;Kim, Young-Joo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.77-86
    • /
    • 2005
  • A monitoring study has been conducted to identify hydrologic conditions, water quality and nutrient loading characteristics of small watershed in Juam Lake. Climate data of the watershed were collected; flow rate was measured and water quality sampling was conducted at the watershed outlet for this study. Water quality data revealed that T-P concentrations meet I grade of lake water quality standard during non-storm period, but degraded up to II-III grade of lake water quality standard during storm period. The observed T-N concentrations always exceeded lake water quality standard. Therefore, T-P was identified as limiting chemical constituent for eutrophication of Juam Lake. T-P concentration of non-storm period also revealed that point source pollution is not serious in the watershed. Three year monitoring results showed that the observed T-N losses were $10.85\~18.88$ kg/ha and T-P losses were $0.028\~0.323$ kg/ha during six month (Mar. - Oct.), respectively. Major portion of runoff amount discharged by a few storm events a year and nutrient load showed apparent seasonal variation. Huge runoff amounts were generated by intense storms, which make application of water treatment or detention facilities ineffective. Monitoring results confirmed that water quality improvement by abating nonpoint source pollution in rural watershed of monsoon climate should be focused on source control. T-P losses from paddy field seemed to consist of significant amount of total load from study watershed. Therefore, management of drainage from paddy field is considered to be important for preventing algal blooming problem in Juam Lake.

Estimation of the Stormwater Impoundments Volume Dependent on the Durations of Design Rainfall (계획강우의 지속기간에 따른 저류지용량의 산정)

  • Yun, Yeo-Jin;Lee, Jae-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.415-426
    • /
    • 2001
  • After Disaster Impact Assessment(DIA) Program was particed, the wide variety of hydrological data are estimated by introducing the concept of critical storm duration to calculate the stormwater impoundments as the alternative of increasing runoff due to many developments. Critical storm duration is varied by a lot of hydraulic structures, drainage characteristics, temporal distribution of design rainfall, return period, and runoff models. In this study the methods of estimating the proper volume to design the stormwater impoundments are proposed to determine the required volume by comparing and analyzing the maximum stormwater impoundments in accordance with the impoundment volume and rainfall duration by using the concept of storage ratio presented in the existing studies. The methods of determining the critical storm duration of design rainfall which cause the maximum load from the runoff hydrograph will be studied as analyzing rainfall-runoff using the various runoff models and observed data.

  • PDF

Development of Flood Inundation Analysis System for Urban Areas using GIS (GIS를 이용한 도시유역 홍수침수 분석시스템 구축)

  • 최성열;이재영;조원철;이재호;최철관
    • Spatial Information Research
    • /
    • v.11 no.2
    • /
    • pp.155-170
    • /
    • 2003
  • Flood inundation analysis system using GIS has been developed to simulate inundation in airport drainage areas. The model developed in this study has been synthetically presented and constructed the preprocess for database construction and input data preparing through a graphic user interface, GUI system and the postprocess processing graphically output resulted in mainprocess analysis model linked GIS(ArcView/Avenue). The mainprocess analysis model was simulated in real phenomenon caused by inflow of storm sewer system by simulation flooding due to backwater effect and surcharged flow in storm sewer system by simulating interaction coupling the overland flow analysis model and storm sewer system analysis model. In the future, the flood inundation analysis system developed in this study will be a great contribution to systematic decision-making for establishing the flood-mitigation management and facilities improvement plan to flooding damage in airport.

  • PDF

Effects of Heavy Rain during Rainy Season and Drainage Methods on Soil Water Content, Photosynthesis Characteristics, and Growth in 'Jinok' and 'Campbell Early' Grapes (장마기 집중호우와 배수방법이 토양수분 및 포도 '진옥'과 '캠벨얼리'의 광합성 특성과 생육에 미치는 영향)

  • Choi, Young Min;Jung, Sung Min;Choi, Dong Geun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, it is increasing the grape farm which is converted from paddy field to orchard. These soil which are poor drainage extremely also can be damaged a lot by excessive water or flooding during heavy rain season on summer. Therefore the aim of this study was carried out to measure the changes of soil water potential and to compare the growth responses of 'Jinok' (Vitis spp.) and 'Campbell Early' (V. labruscana) grapes under three drainage systems (control, conventional drainage, and under drainage). After heavy rain, soil water potential holding times above -15 kpa applied water excessive were 352, 348 and 180 hours in control, conventional, and under drainage systems, respectively. The clay content of the under drainage system was lower than the other systems about 8-12%. The crop water stress index was lowest in the under drainage and highest in the control. Also, photosynthetic rate has showed the opposite result with crop water stress index. It was significant differences between the treatments but, the value has not shown significantly different between the varieties. In addition, leaf area and the trunk growth rate was more effective in under drainage than in the control and conventional drainage.

The Effect on the Characteristics of Urban Storm Runoff due to the Space Allocation of Design Rainfall and the Partition of the Subbasin (도시유역에서의 강우 공간분포 및 소유역분할이 유출특성에 미치는 영향)

  • Lee, Jong-Tae;Lee, Sang-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.2
    • /
    • pp.177-191
    • /
    • 1997
  • The influences of the space allocation of design rainfall and partition of the subbasin on the characteristics of urban storm runoff was investigated for the 6 drainage basins by applying SWMM model. It show the deviation of -54.68∼18.77% in the peak discharge when we applied the composed JUFF quantiles to the two zones which are divided by upper and lower region of the basin. Then it is compared with the value for the case of using uniform rainfall distribution all over the drainage. Therefore, it would be helpful to decrease the flood risk when we adopt the space distribution of the design rainfall. The effects of the partitioning the drainage on the computing result shows various responses because of the surface characteristics of the each basin such as slope, imperviousness ratio, buy we can get closer result to the measured value as we make the subbasin detailed. If we use the concept of the skewness and area ratio when we determine the width of subbasin, we can improve the computed result even with fewer number of subbasins. We expect reasonable results which close into the measured results in the range of relative error, 25%, when we divide the basin into more than 3 subbasins and the total urban drainage area is less than 10$\textrm{km}^2$.

  • PDF

A Study on the Stormwater Drainage Method of Overflow Type for the Prevention of Urban Flood due to Abnormal Precipitation (이상강우 발생시 도시침수 방지를 위한 월류형 우수배수방법 연구)

  • Seo, Se Deok;Park, Hyung Keun;Kim, Tae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.569-577
    • /
    • 2019
  • Urban flooding has been a frequent phenomenon in recent years caused by the increase in maximum stormwater runoff arising from abnormal rainfall due to global warming, urban development, and development of lowlands according to population inflows. In order to respond positively against abnormal precipition in the city, it is necessary to check the GWI (Green Water Infra) effect and effectively utilize the existing stormwater detention tanks and treat stormwater to prevent local flooding. In this study, Overflow Type stormwater drainage methods are evaluated as a method of preventing urban flooding in abnormal precipitation using the Dynamic Wave Analysis SWMM (Storm Water Management Model) provided by the United States Environmental Protection Agency. Comparing and analyzing the Upward Watergate Type and Overflow Type, it was analyzed that the Overflow Type reduces the maximum flood discharge by 61 % and the total flood volume by 56 % in the rainfall of Typhoon Kong-rey. The application of the Overflow Type and the natural-pneumatic drainage method to the rainfall of Typhoon Soulik resulted in a 20 % reduction in maximum flood runoff and a 67 % reduction in total flood quantity. Therefore, as a solution to the abnormal rain fall, it is possible to improve the existing stormwater detection tank and install additional facilities. It is expected to be economically possible to strom drainage under limited conditions.

Runoff Analysis of Urban Drainage Using DR3M-II (DR3M-II를 이용한 도시배수유역의 유출해석)

  • Min, Sang-Gi;Lee, Kil-Choon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.9 s.158
    • /
    • pp.699-711
    • /
    • 2005
  • In this study, the U.S. Geological Survey's DR3M-II(Distributed Routing Rainfall-Runoff Model) was applied for small urban drainage. DR3M-II is a watershed model for routing storm runoff through a branched system of pipes and natural channels using rainfall input. The model was calibrated and verified using short term rainfall-runoff data collected from Sanbon basin. Also, the parameters were optimized using Rosenbrock technic. An estimated simulation error for peak discharge was about 7.4 percent and the result was quite acceptable. Results of the sensitivity analysis indicate that the percent of effective impervious area and ${\alpha}$ defining surface slope and roughness were the most sensitive variables affecting runoff volumes and peak discharge for low and high intensity storm respectively. In most cases, soil moisture accounting and infiltration parameters are the variables that give more effects to runoff volumes than peak discharge. Parameter ${\alpha}$ showed the opposite result.

Development of Optimal Design Simulation Model for Least Cost Urban Sewer System Considering Risk (I) (위험도를 고려한 최소비용 도시우수관망 설계의 최적화 모형개발 (I): 모형의 개발과 시험유역의 적용)

  • Jang, Suk-Hwan;Park, Sang-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.12 s.161
    • /
    • pp.1021-1028
    • /
    • 2005
  • This study purpose to develop simulation model of optimal design condition of urban storm sewer system considering risk. Urban Storm Sewer Optimal Design Model(USSOD) can compute pipe capacity, pipe slope, crown elevation, excavation depth, risk and return cost in the condition of design discharge. Rational formula is adopted for design discharge and Manning's formula is used for pipe capacity. Discrete differential dynamic programming(DDDP) technique which is a kind of dynamic programming(DP) is used for optimization and first order second moment approximation method and uncertainty analysis is also for developing model. USSOD is applied to hypothetical drainage basin to test and verify, which resulted economical and efficient design in urban drainage sewer system.

Impact of Climate Change on An Urban Drainage System (기후변화가 도시배수시스템에 미치는 영향)

  • Kang, Na-Rae;Kim, Soo-Jun;Lee, Keon-Haeng;Kim, Duck-Gil;Kwak, Jae-Won;Noh, Hui-Sung;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.623-631
    • /
    • 2011
  • In recent decade, the occurrences of typhoon and severe storm events are increasing trend due to the climate change. And the intensity of natural disaster is more and more stronger and the loss of life and damage of property are also increasing. Therefore, this study tried to understand the impact of climate change on urban drainage system for prevention and control of natural disaster and for this, we selected Gyeyang-gu, Incheon city as a study area. We investigated the climate models and scenarios for the selection of proper model and scenario, then we estimated frequency based rainfall in hourly unit considering climate change. The XP-SWMM model was used to estimate the future flood discharge on urban drainage system using the estimated frequency based rainfall. As a result, we have known that the study area will be overflown in the future and so we may need prepare proper measures for the flood prevention and control.