• Title/Summary/Keyword: Stored product

Search Result 344, Processing Time 0.028 seconds

Enhancement of Konjac Storage by Controlling pH of Coagulant and Soaking Liquid (응고제와 침지제의 pH 조절에 따른 곤약의 저장성 강화)

  • Choi, Ung-Kyu
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.100-105
    • /
    • 2019
  • In this study, viable cells, coliforms and food poisoning bacteria were identified according to the pH levels of the coagulant and immersion liquid during each stage in the production of konjac, and storage stability was confirmed for 3 months. A considerable number of bacteria were found in the raw material, or powdered konjac (Amorphophallus konjac), as well as in the processing water. However, it has been shown that the plastic package were safe from microorganisms. Due to the high pH of the added coagulant [2.0% $Ca(OH)_2$], no contaminating bacteria were observed after konjac jelly formation. Coliforms were not detected any of the tested steps. During the molding process, the pH of konjac was adjusted to 9.5 ~ 12.5 at intervals of 0.5, and the number of bacteria was determined. As a result, no bacteria were detected in the alkaline range above pH 11.5. The pH of the immersion liquid was adjusted to 10.0 ~ 12.5, and after hardening, the konjac were stored at room temperature for 12 weeks. As a result, no bacteria, Escherichia coli or other food poisoning bacteria were detected at pH 11.5 or higher. Based on these results, it is expected that when the pH levels of the konjac and its immersion liquid are maintained at 11.5, it should be possible to keep the product for 3 months without additional sterilization process.

Comparative Efficacy of Synthetic and Natural Tenderizers on Quality Characteristics of Restructured Spent Hen Meat Slices (RSHS)

  • Kantale, Rushikesh Ambadasrao;Kumar, Pavan;Mehta, Nitin;Chatli, Manish Kumar;Malav, Om Prakash;Kaur, Amanpreet;Wagh, Rajesh Vishwanath
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.121-138
    • /
    • 2019
  • In the present study, comparative efficacy of natural as well as synthetic tenderizers on the quality characteristics of restructured spent hen meat slices (RSHS) was studied. Four different batches of RSHS viz. Control (without any tenderizer), T1 (1.25% calcium chloride replacing salt in formulation), T2 and T3 (1.5% each of pineapple rind and fig powder, replacing binder in the formulation) were developed in pre-standardized formulation. Vacuum tumbling was performed for 2.5 h and cooked product (RSHS) was assayed for quality attributes. Samples were packaged in aerobic conditions, stored for 21 days under refrigeration ($4{\pm}1^{\circ}C$) and were evaluated for pH, oxidative and microbial quality parameters at regular interval of 7 days. Water holding capacity of T2 was recorded the highest and significantly higher (p<0.05) than all other samples. The textural attributes of T2 were comparable to T1 but significantly higher (p<0.05) than C and T3. The colour attributes ($L^*$, $a^*$, and $b^*$ value) of T2 and T3 were improved due to use of natural tenderizers. During sensory evaluation, tenderness scores for T2 samples were recorded the highest. Throughout storage period, thiobarbituric acid reactive substances (TBARS), free fatty acids (FFA) and peroxide value (PV) followed an increasing trend for control as well as treated products; however, T2 showed a significantly (p<0.05) lower value than control and other treated samples. It can be concluded that good quality RSHS with better storage stability could be prepared by utilizing 1.5% pineapple rind powder as natural tenderizer.

A Heat Shock Simulation System for Testing Performance of EWP (EWP 성능 검사를 위한 열 충격 모사시스템)

  • Yoo, Nam-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.553-558
    • /
    • 2019
  • Global auto parts companies are making efforts to develop EWP(: Electric Water Pump) which is one of the core parts of environment friendly car. In eco-friendly automobiles, an independent cooling system is used rather than a cooling system that is linked to an internal combustion engine. Therefore, the research and development of the water pump operating separately from the engine and the related production system are being actively carried out. In order to overcome the shortcoming of EWP of PPS material suitable for injection system, G company which is a global parts company that researches and develops EWP around SUS and is in the process of developing robot-based production equipment for mass production. In this paper, a heat shock simulation system is designed and implemented that works with the robot-based production system to test the performance of the produced EWP. By using this system, it is possible to test the EWP in an virtual environment similar to the actual environment, thereby reducing the defect rate of the product. At the same time, all the data produced during the entire process for testing can be stored, which can be utilized in the future development of CPS(: Cyber Physical System) of EWP system based on big data.

Weight Loss Prediction by Operating Conditions of CA Storage (CA저장고의 작동 환경에 따른 감모율 예측)

  • Park, Chun Wan;Park, Seok Ho;Kim, Jin Se;Choi, Dong Soo;Kim, Yong Hun;Lee, Su Jang
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.312-317
    • /
    • 2017
  • Weight loss that influences quality and farmer incomes is affected by the storage environment of agricultural products. The interior of storage should be maintained at high humidity to prevent the weight loss of products which contain a lot of moisture. The research had constantly proceeded with change in the heat exchanger surface areas, humidity systems, and weight loss forecast to maintain high humidity within storage. Relative humidity that exerts an effect weight loss of crop is influenced by storage temperature, leak state, and volume of product. When weight loss is predicted, different conditions of these factors are derived. In case of CA storage, ways of forecasting the weight loss become easier compared to cold storage due to sealed storage with external environment during storage period. In this study, apples were stored in purge-type CA storage and weight loss has been predicted by using operating characteristics and environmental conditions. As a result, humidity variation in the storage fluctuates with the operation of the unit-cooler. Furthermore, unit-cooler operation factor is influenced by outside temperature and respiration heat. Prediction value of weight loss according to temperature and humidity has been most accurately predicted. Prediction value through defrosting water measured shows unit-cooler work quality. K-value needs verification to calculate the VPD method.

Research trends and views for insect-proof food packaging technologies (해충유입 방지를 위한 방충포장기법의 연구 동향 및 전망)

  • Chang, Yoonjee;Na, Ja-hyun;Han, Jaejoon
    • Food Science and Industry
    • /
    • v.50 no.2
    • /
    • pp.2-11
    • /
    • 2017
  • Packaging is the last defensive barrier that protects food products from insect infestation during storage. However, though packaging films are hermetically sealed, insects can still be attracted by strong olfactory cues and penetrate through packaging materials, resulting in contamination. Insect contamination may cause consumers to be repulsed by contaminated food products. Especially, it is well known that stored-product insects cause critical problems in the cereal industry by inducing quantitative and qualitative damages to the grain products. The contaminations are caused by insects' metabolic byproducts and body parts, consequentially caused customer repulsion. Therefore, it is necessary to repel and control insects. However, management systems for storage insects in food industry have been inadequate for many years. Synthetic pesticides has been widely used, but pesticides may accumulate in foods, causing acute and chronic symptoms in consumers. For this reason, there is a growing need for the development of natural insecticides that can replace synthetic pesticides. Thus, various reports about anti-insect packaging materials and strategies to repel insects were introduced in this study. Furthermore, we suggested new strategies to develop an insect-repelling active packaging materials which could be applied in the food packaging industry.

Characteristics of Fluoride-based Anti-stain Chemicals Made from Industrial By-product (II) -Fungicidal Effectiveness against Isolated Fungi Through Laboratory Evaluation and Field Evaluation- (산업 부산물을 이용하여 제조한 플루오르화합물계 목재 방미제의 특성 (II) - 분리 균주에 대한 목재 방미효력 및 야외 효력 평가 -)

  • Lee, Jong-Shin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.82-89
    • /
    • 2004
  • Two kinds of chemicals (RNF-3 and RNF-4) with high anti-mold effectiveness against stored fungi causing fungal discoloration was selected from among the six kinds of fluoride-based chemicals in the preceding study. In this study, the anti-mold test using 16 species fungi isolated from the softwood lumbers which were fungal discolored and field test in the sawmill was carried out to prove the feasibility for practical using of selected chemicals.For the isolated fungi, the RNF-3 consist of F and Cu showed high mycelial growth control in the PDA medium and fungicidal effectiveness in the japanese red pine (Pinus densiflora), korean pine (Pinus koraiensis) and radiata pine (Pinus radiata) when the concentration was 2% or more. However the RNF-4 consist of F only was not effective compared with RNF-3 because of mycelial growth in the PDA medium and wood treated with 2% or more chemical solution. The RNF-3 also showed a strong anti-mold effectiveness because there was no fungal discoloration for the radiata pine boards treated by 2% and 10 min. soaking in the field test. These results mean that RNF-3 can be used as domestic anti-stain chemicals for prevention of fungal discoloration of the softwood lumber

A Techno-Economic Study of Commercial Electrochemical CO2 Reduction into Diesel Fuel and Formic Acid

  • Mustafa, Azeem;Lougou, Bachirou Guene;Shuai, Yong;Razzaq, Samia;Wang, Zhijiang;Shagdar, Enkhbayar;Zhao, Jiupeng
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.148-158
    • /
    • 2022
  • The electrochemical CO2 reduction (ECR) to produce value-added fuels and chemicals using clean energy sources (like solar and wind) is a promising technology to neutralize the carbon cycle and reproduce the fuels. Presently, the ECR has been the most attractive route to produce carbon-building blocks that have growing global production and high market demand. The electrochemical CO2 reduction could be extensively implemented if it produces valuable products at those costs which are financially competitive with the present market prices. Herein, the electrochemical conversion of CO2 obtained from flue gases of a power plant to produce diesel and formic acid using a consistent techno-economic approach is presented. The first scenario analyzed the production of diesel fuel which was formed through Fischer-Tropsch processing of CO (obtained through electroreduction of CO2) and hydrogen, while in the second scenario, direct electrochemical CO2 reduction to formic acid was considered. As per the base case assumptions extracted from the previous outstanding research studies, both processes weren't competitive with the existing fuel prices, indicating that high electrochemical (EC) cell capital cost was the main limiting component. The diesel fuel production was predicted as the best route for the cost-effective production of fuels under conceivable optimistic case assumptions, and the formic acid was found to be costly in terms of stored energy contents and has a facile production mechanism at those costs which are financially competitive with its bulk market price. In both processes, the liquid product cost was greatly affected by the parameters affecting the EC cell capital expenses, such as cost concerning the electrode area, faradaic efficiency, and current density.

A study on the selection of the target scope for destruction of personal credit information of customers whose financial transaction effect has ended (금융거래 효과가 종료된 고객의 개인신용정보 파기 대상 범위 선정에 관한 연구)

  • Baek, Song-Yi;Lim, Young-Bin;Lee, Chang-Gil;Chun, Sam-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.163-169
    • /
    • 2022
  • According to the Credit Information Act, in order to protect customer information by relationship of credit information subjects, it is destroyed and stored separately in two stages according to the period after the financial transaction effect is over. However, there is a limitation in that the destruction of personal credit information of customers whose financial transaction effect has expired cannot be collectively destroyed when the transaction has been terminated, depending on the nature of the financial product and transaction. To this end, the IT person in charge is developing a computerized program according to the target and order of destruction by investigating the business relationship by transaction type in advance. In this process, if the identification of the upper relation between tables is unclear, a compliance issue arises in which personal credit information cannot be destroyed or even information that should not be destroyed because it depends on the subjective judgment of the IT person in charge. Therefore, in this paper, we propose a model and algorithm for identifying the referenced table based on SQL executed in the computer program, analyzing the upper relation between tables with the primary key information of the table, and visualizing and objectively selecting the range to be destroyed. presented and implemented.

Investigating the Impact of Storage Conditions on Dietary Fiber and Calcium Contents of Black Soybean Sunsik to Develop a Functional Labelling System (저장조건에 따른 기능성표시제도가 도입된 검은콩 선식 제품의 식이섬유 및 칼슘 함량 변화 관찰)

  • Kang-Pyo Lee;Ye-Won In;Ji-Hyun Im;Ok-Hwan Lee;Boo-Yong Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.4
    • /
    • pp.273-278
    • /
    • 2023
  • This study aimed to predict the shelf life of black soybean Sunsik to develop a functional labeling system for the product. The Arrhenius equation was used to calculate the shelf life by examining alterations in the dietary fiber and calcium levels of black soybean Sunsik stored at 25, 35, and 50℃ for 0, 6, and 12 months. Dietary fiber and calcium analyses were performed according to the experimental methods specified in the Food Code of the Ministry of Food and Drug Safety. Both black soybean Sunsik (BS) and black soybean Sunsik containing nondigestible maltodextrin and calcium lactate (BSN) exhibited an upward trend in dietary fiber content after 12 months of storage, compared to their initial levels. During storage, the phytate in Sunsik degraded, releasing cations that facilitated the formation of new cross-links between pectic acid and middle lamella, which ultimately increased dietary fiber content. Conversely, the calcium contents of both BS and BSN decreased with prolonged storage. Based on these findings, the expected shelf life of BS and BSN was calculated as 15.65 and 28.34 months, respectively.

Breeding and characterization of a new white cultivar of Pleurotus ostreatus, 'Sena' (갓이 백색인 느타리 신품종 '세나'의 육성 및 특성)

  • Minji Oh;Min-Sik Kim;Ji-Hoon Im;Youn-Lee Oh
    • Journal of Mushroom
    • /
    • v.21 no.3
    • /
    • pp.179-184
    • /
    • 2023
  • The development of automated bottle cultivation systems has facilitated the large-scale production of Pleurotus ostreatus, a commonly cultivated oyster mushroom species in South Korea. However, as the consumption of this product is decreasing and production quantities are exceeding demand, farmers are seeking various other mushroom types and cultivars. In response to this, we have developed a new oyster mushroom cultivar named 'Sena'. This high-yielding cultivar has a white pileus and excellent quality. The white oyster mushroom cultivars 'Goni' and 'Miso' were selected as parental strains from the genetic resources of the National Institute of Horticultural and Herbal Science's Mushroom Division. By crossing their monokaryons, hybrids were developed and subjected to cultivation trials and characteristic evaluations to select the superior cultivar. The optimal temperature for 'Sena' mycelial growth is 25-30℃, with inhibition occurring at temperatures above 30℃, whereas the temperature for mushroom growth is 14-18℃. The mushrooms grow in clusters, with the white pileus having a shallow funnel shape. Optimal mycelial growth occurs in malt extract agar medium. When cultivated in 1,100 cc bottles, the 'Sena' cultivar had 35 available individuals, surpassing the number 16 available from the control cultivar 'Goni'. The yield per bottle also increased by approximately 157 g, a 24% increase over the control cultivar amount. When 300 g samples of harvested mushrooms were packed and stored at 4℃ in a cold storage facility for 28 days, the weight loss rate of 'Sena' was approximately 4.22%, lower than that of 'Goni'. Moreover, the changes in pileus and stipe whiteness (measuring 6.99 and 8.33, respectively) were also lower than those of the control cultivar. Since the appearance of a white cap is crucial for quality assessment, the 'Sena' cultivar is superior to the 'Goni' cultivar in terms of both weight and quality after undergoing low-temperature storage.