• Title/Summary/Keyword: Store Management System

Search Result 544, Processing Time 0.021 seconds

A Real-Time Stock Market Prediction Using Knowledge Accumulation (지식 누적을 이용한 실시간 주식시장 예측)

  • Kim, Jin-Hwa;Hong, Kwang-Hun;Min, Jin-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.109-130
    • /
    • 2011
  • One of the major problems in the area of data mining is the size of the data, as most data set has huge volume these days. Streams of data are normally accumulated into data storages or databases. Transactions in internet, mobile devices and ubiquitous environment produce streams of data continuously. Some data set are just buried un-used inside huge data storage due to its huge size. Some data set is quickly lost as soon as it is created as it is not saved due to many reasons. How to use this large size data and to use data on stream efficiently are challenging questions in the study of data mining. Stream data is a data set that is accumulated to the data storage from a data source continuously. The size of this data set, in many cases, becomes increasingly large over time. To mine information from this massive data, it takes too many resources such as storage, money and time. These unique characteristics of the stream data make it difficult and expensive to store all the stream data sets accumulated over time. Otherwise, if one uses only recent or partial of data to mine information or pattern, there can be losses of valuable information, which can be useful. To avoid these problems, this study suggests a method efficiently accumulates information or patterns in the form of rule set over time. A rule set is mined from a data set in stream and this rule set is accumulated into a master rule set storage, which is also a model for real-time decision making. One of the main advantages of this method is that it takes much smaller storage space compared to the traditional method, which saves the whole data set. Another advantage of using this method is that the accumulated rule set is used as a prediction model. Prompt response to the request from users is possible anytime as the rule set is ready anytime to be used to make decisions. This makes real-time decision making possible, which is the greatest advantage of this method. Based on theories of ensemble approaches, combination of many different models can produce better prediction model in performance. The consolidated rule set actually covers all the data set while the traditional sampling approach only covers part of the whole data set. This study uses a stock market data that has a heterogeneous data set as the characteristic of data varies over time. The indexes in stock market data can fluctuate in different situations whenever there is an event influencing the stock market index. Therefore the variance of the values in each variable is large compared to that of the homogeneous data set. Prediction with heterogeneous data set is naturally much more difficult, compared to that of homogeneous data set as it is more difficult to predict in unpredictable situation. This study tests two general mining approaches and compare prediction performances of these two suggested methods with the method we suggest in this study. The first approach is inducing a rule set from the recent data set to predict new data set. The seocnd one is inducing a rule set from all the data which have been accumulated from the beginning every time one has to predict new data set. We found neither of these two is as good as the method of accumulated rule set in its performance. Furthermore, the study shows experiments with different prediction models. The first approach is building a prediction model only with more important rule sets and the second approach is the method using all the rule sets by assigning weights on the rules based on their performance. The second approach shows better performance compared to the first one. The experiments also show that the suggested method in this study can be an efficient approach for mining information and pattern with stream data. This method has a limitation of bounding its application to stock market data. More dynamic real-time steam data set is desirable for the application of this method. There is also another problem in this study. When the number of rules is increasing over time, it has to manage special rules such as redundant rules or conflicting rules efficiently.

A Study on the Strategic Use of an IMC Planning Model for the Distribution Industry (유통업 IMC 기획모델의 전략적 활용에 관한 연구)

  • Mo, Sun-Jong;Song, In-Am
    • Journal of Global Scholars of Marketing Science
    • /
    • v.18 no.2
    • /
    • pp.113-145
    • /
    • 2008
  • Marketing for the distribution industry is making an ongoing progress in the changes of customers, the competitive environment, and the internal marketing environment. Integrated marketing communication activities are required for the enhancement of efficiency in the market.oriented activities. In this study, IMC is defined as "a notion that a market oriented business integrated marketing communication means, conducting and evaluating marketing activities with consistent messages in order to communicate with customers based on databases." In this study, an IMC planning model for the improvement of marketing efficiency in the distribution industry was derived from a pilot study. This model may be broken down into the following phases: IMC goals setting, situational analysis (customer analysis, competition analysis and company analysis), customer data analysis, contact management, budgeting, the establishment of an IMC strategy, the IMC mix and execution, an evaluation system, and feedback. In consideration of the characteristics of the distribution industry, this study was accompanied by a vocational study on IMC means employed by, in particular, department stores and other distributors such as: advertising, sales promotion, sales promotion advertising, direct marketing, public relations, personal selling, the Internet, mobile, visual merchandising, words of mouth. In addition, this study also covered the correlation among variables such as IMC activities of distributors, the process of forming customer's brand attitudes, brand loyalty and repurchase intention. This research would enhance the utilization of IMC. The analysis on customer's brand attitudes toward the IMC activities of distributors requires the simultaneous consideration of how they are linked to purchase as well as their attitudes toward both distributors and stores. The formation of brand loyalty and repurchase intention is related to the integration of marketing communication and the maintenance of consistency in contents, which requires integrated brand communication (IBC) strategies. IBC is a concept of using IMC means to manage the brand in a continuing and consistent manner and measuring their effect, which is a process to establish enterprise.level brand identity and maximize brand loyalty and repurchase intention by integrating IMC means. For an empirical analysis in this study, an online questionnaire survey was conducted among those department store customers from 20's to 50's who reside either in the Seoul and Gyeonggi areas and have made purchase at department stores. In this study, the research model consisted of four theoretical variables: IMC activities, IMC attitudes, brand loyalty, and repurchase intention, on which variables a pilot study was conducted. A number of hypotheses were constructed on the relations between IMC activities and IMC attitudes, between IMC attitudes and repurchase intention, and between brand loyalty and repurchase intention. The test of the hypotheses may be summarized as follows: Firstly, the test of the hypothesis concerning the relation between IMC attitudes and IMC activities - advertising, sales promotion, direct marketing, public relations, personal selling, the Web, mobile, visual merchandising, and word of mouth - indicates that advertising, sales promotion, direct marketing, public relations, personal selling, mobile, visual merchandising, and word of mouth have significant impact on IMC activities. In addition to the result similar to those of previous studies that such marketing communication means as word of mouth, advertising, personal selling and sales promotion, in particular, play very important roles, a notable finding of this study is that visual merchandising performed by department stores is shown to have very significant impact on IMC activities. On a separate note, it is also noteworthy that Internet marketing activities engaged by department stores are not shown to have significant impact on IMC attitudes. Secondly, the test of the hypothesis on the relation between IMC attitudes and brand loyalty attests that IMC attitudes for the distribution industry significantly affect brand loyalty. Thirdly, the test of the hypothesis concerning the relation between IMC attitudes and repurchase intention confirms that IMC attitudes for the distribution industry significantly affect repurchase intention. Fourthly, the test of the hypothesis concerning the relation between brand loyalty and repurchase intention indicates that brand loyalty significantly affect repurchase intention. A comprehensive view of these findings points to the conclusion that the IMC activities for the distribution industry do affect IMC attitudes, brand loyalty, and repurchase intention.

  • PDF

Introduction of region-based site functions into the traditional market environmental support funding policy development (재래시장 환경개선 지원정책 개발에서의 지역 장소적 기능 도입)

  • Jeong, Dae-Yong;Lee, Se-Ho
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2005.05a
    • /
    • pp.383-405
    • /
    • 2005
  • The traditional market is foremost a regionally positioned place, wherein the market directly represents regional and cultural centered traits while it plays an important role in the circulation of facilities through reciprocal, informative and cultural exchanges while sewing to form local communities. The traditional market in Korea is one of representative retail businesses and premodern marketing techniques by family owned business of less than five members such as product management, purchase method, and marketing patterns etc. Since the 1990s, the appearance of new circulation-type businesses and large discount convenience stores escalated the loss of traditional competitiveness, increased the living standard of customers, changed purchasing patterns, and expanded the ubiquity of the Internet. All of these changes in external circulation circumstances have led the traditional markets to lose their place in the economy. The traditional market should revive on a regional site basis through the formation of a community of regional neighbors and through knowledge-sharing that leads to the creation of wealth. For the purpose of creating a wealth in a place, the following components are necessary: 1) a facility suitable for the spatial place of the present, 2)trust built through exchanges within the changing market environment, which would simultaneously satisfy customer's desires, 3) international bench marking on cases such as regionally centered TCM (England), BID (USA), and TMO (Japan) so that the market unit of store placement transfers from a spot policy to a line policy, 4)conversion of communicative conception through a surface policy approach centered around a macro-region perspective. The budget of the traditional market funding policy was operational between 2001 and 2004, serving as a counter move to solve the problem of the old traditional market through government intervention in regional economies to promote national economic strength. This national treasury funding project was centered on environmental improvement, research corps, and business modernization through the expenditure of 3,853 hundred million won (Korean currency). However, the effectiveness of this project has yet to be to proven through investigation. Furthermore, in promoting this funding support project, a lack of professionalism among merchants in the market led to constant limitations in comprehensive striving strategies, reduced capabilities in middle-and long-term plan setup, and created reductions in voluntary merchant agreement solutions. The traditional market should go beyond mere physical place and ordinary products creative site strategies employing the communicative approach must accompany these strategies to make the market a new regional and spatial living place. Thus, regarding recent paradigm changes and the introduction of region-based site functions into the traditional market, acquiring a conversion of direction into the newly developed project is essential to reinvestigate the traditional market composed of cultural and economic meanings, for the purpose of the research. Excavating social policy demands through the comparative analysis of domestic and international cases as well as innovative and expert management leadership development for NPO or NGO civil entrepreneurs through advanced case research on present promotion methods is extremely important. Discovering the seeds of the cultural contents industry cored around regional resource usages, commercializing regionally reknowned products, and constructing complex cultural living places for regional networks are especially important. In order to accelerate these solutions, a comprehensive and systemized approach research operated within a mentor academy system is required, as research will reveal distinctive traits of the traditional market in the aging society.

  • PDF

Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode (CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.141-154
    • /
    • 2019
  • Rapid growth of internet technology and social media is progressing. Data mining technology has evolved to enable unstructured document representations in a variety of applications. Sentiment analysis is an important technology that can distinguish poor or high-quality content through text data of products, and it has proliferated during text mining. Sentiment analysis mainly analyzes people's opinions in text data by assigning predefined data categories as positive and negative. This has been studied in various directions in terms of accuracy from simple rule-based to dictionary-based approaches using predefined labels. In fact, sentiment analysis is one of the most active researches in natural language processing and is widely studied in text mining. When real online reviews aren't available for others, it's not only easy to openly collect information, but it also affects your business. In marketing, real-world information from customers is gathered on websites, not surveys. Depending on whether the website's posts are positive or negative, the customer response is reflected in the sales and tries to identify the information. However, many reviews on a website are not always good, and difficult to identify. The earlier studies in this research area used the reviews data of the Amazon.com shopping mal, but the research data used in the recent studies uses the data for stock market trends, blogs, news articles, weather forecasts, IMDB, and facebook etc. However, the lack of accuracy is recognized because sentiment calculations are changed according to the subject, paragraph, sentiment lexicon direction, and sentence strength. This study aims to classify the polarity analysis of sentiment analysis into positive and negative categories and increase the prediction accuracy of the polarity analysis using the pretrained IMDB review data set. First, the text classification algorithm related to sentiment analysis adopts the popular machine learning algorithms such as NB (naive bayes), SVM (support vector machines), XGboost, RF (random forests), and Gradient Boost as comparative models. Second, deep learning has demonstrated discriminative features that can extract complex features of data. Representative algorithms are CNN (convolution neural networks), RNN (recurrent neural networks), LSTM (long-short term memory). CNN can be used similarly to BoW when processing a sentence in vector format, but does not consider sequential data attributes. RNN can handle well in order because it takes into account the time information of the data, but there is a long-term dependency on memory. To solve the problem of long-term dependence, LSTM is used. For the comparison, CNN and LSTM were chosen as simple deep learning models. In addition to classical machine learning algorithms, CNN, LSTM, and the integrated models were analyzed. Although there are many parameters for the algorithms, we examined the relationship between numerical value and precision to find the optimal combination. And, we tried to figure out how the models work well for sentiment analysis and how these models work. This study proposes integrated CNN and LSTM algorithms to extract the positive and negative features of text analysis. The reasons for mixing these two algorithms are as follows. CNN can extract features for the classification automatically by applying convolution layer and massively parallel processing. LSTM is not capable of highly parallel processing. Like faucets, the LSTM has input, output, and forget gates that can be moved and controlled at a desired time. These gates have the advantage of placing memory blocks on hidden nodes. The memory block of the LSTM may not store all the data, but it can solve the CNN's long-term dependency problem. Furthermore, when LSTM is used in CNN's pooling layer, it has an end-to-end structure, so that spatial and temporal features can be designed simultaneously. In combination with CNN-LSTM, 90.33% accuracy was measured. This is slower than CNN, but faster than LSTM. The presented model was more accurate than other models. In addition, each word embedding layer can be improved when training the kernel step by step. CNN-LSTM can improve the weakness of each model, and there is an advantage of improving the learning by layer using the end-to-end structure of LSTM. Based on these reasons, this study tries to enhance the classification accuracy of movie reviews using the integrated CNN-LSTM model.