• Title/Summary/Keyword: Storage tanks

Search Result 411, Processing Time 0.022 seconds

Theoretical Analysis of the Charging Process with Perfectly Mixed Region in Stratified Thermal Storage Tanks (완전혼합영역을 갖는 성층축열조의 충전과정에 대한 이론적인 해석)

  • Yoo, H.;Pak, E.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.184-195
    • /
    • 1995
  • A theoretical one-dimensional model for the charging process in stratified thermal storage tanks is established presuming that the fluid ensuing from the tank inlet creates a perfectly mixed, layer above the thermocline. Both the generic and asymptotic closed-form solutions are obtained via the Laplace transformation. The asymptotic solution describes the nature of the charging pertaining to the case of no thermal diffusion, whereas the generic solution is of practical importance to understand the role of operating parameters on the stratification. The present model is validated through comparison with available experimental data, where they agree well with each other within a reasonable limit. An interpretation of the exact solution entails two important features associated with the charging process. The first is that an in-crease in the mixing depth $h_m$ causes a relatively slow temperature rise in the perfectly mixed region, but on the other hand it results in a faster decay of the overall temperature gradient across the thermocline. Next is the predominance of the mixing depth in the presence of the prefectly mixed region. In such a case the effect of the Peclet number is marginal and there-fore the thermal characteristics are solely dependent on the mixing depth paticularly for large $h_m$. The Peclet number affects significantly only for the case without mixing. Variation of the storage efficiency in response to the change in the mass flow rate agrees favorably with the published experimental results, which confirms the utility of the present study.

  • PDF

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

A Study on the Properties of Hwangto Permeable Block Using Ferro Nickel Slag (페로니켈슬래그를 혼입한 황토투수블럭 물성에 관한 연구)

  • Kim, Soon-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.607-618
    • /
    • 2022
  • This study involves the development of a Hwangto permeable block for rainwater storage tanks. The permeable products that form continuous voids between Hwangto binders and aggregates are fine milled slag powder, which is an industrial by-product generated during the production of Hwangto and iron, and ferro nickel slag. The properties of Hwangto permeable blocks were studied using recycled resource aggregates. The target quality is based on KSF 2394. The Hwangto permeable block for a rainwater storage tank is made of water-permeable material, and the permeability of the Hwangto permeable block itself is 0.1mm/sec or higher, with a physical performance of over 5.0MPa in flexural strength and over 20.0MPa in compressive strength. The physical properties of Hwangto permeable block for rainwater storage tanks were researched and developed. In order to prevent flooding due to heavy rain in summer and the urban heat island phenomenon due to depletion of ground water, continuous pores are formed in the block to secure a permeability function to prevent rainwater from accumulating in the pavement of the floor, and to prevent slippage for comfortable and safe storage.

A Study on the Effect of Evaporation of Liquid Hydrogen Tank Related to Horizontal Sinewave (액화수소 저장탱크의 수평요동이 증발 특성에 미치는 영향에 대한 연구)

  • SEUNG JUN OH;JUN YEONG KWON;JEONG HWAN YOON
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.155-161
    • /
    • 2023
  • Recently, a study on alternative and renewable energy is being conducted due to energy depletion and environmental problems. In particular, a hydrogen has the advantage of converting and storing the remaining energy into water-electrolyzed hydrogen through renewable energy generation. In general, due to reasons such as insulation problems, a study on high-pressure hydrogen storage tanks and related parts has recently been conducted. However, in the case of liquid hydrogen, the volume can be reduced by about 800 times or more compared to high-pressure hydrogen gas, so the study on this is needed as a technology that can increase energy density. In this study, the evaporation characteristics were analyzed under fixed heat flux conditions for liquid hydrogen storage tanks and the change in thermal stratification according to sloshing was analyzed. The heat flux condition was fixed at 250 W/m2 and the horizontal resonance frequency of the primary mode was applied to the storage tank. As a result, it was confirmed that the thermal stratification phenomenon decreased compared to the case where the slashing was not present due to forced convection when the slashing was present.

Particle-based Simulation for Sloshing in a Rectangular Tank (사각 탱크 내 슬로싱 해석을 위한 입자법 시뮬레이션)

  • Hwang, Sung-Chul;Lee, Byung-Hyuk;Park, Jong-Chun;Sung, Hong-Gun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.31-38
    • /
    • 2010
  • The Floating storage and re-gasification unit (FSRU), which has large cargo storage tanks, is a floating liquefied natural gas (LNG) import terminal. The sloshing motion in tanks that are partially filled with LNG can cause impact pressure on the containment system and affect the global motion of the FSRU. Therefore, the accurate prediction of sloshing motion has been a significant issue in the offshore gas production industry. In this paper, a particle method based on the moving particle semi-implicit (MPS) method proposed by Koshizuka and Oka (1996) has been modified to predict sloshing motion accurately in a rectangular tank with the filling ratio of water. The simulation results, including the violent sloshing of the fluid, were validated by comparison with the original MPS method.

Impermeable Standards for the Concrete Bottom of Dikes for Crude Oil Storage Tanks (원유저장탱크 방류벽의 콘크리트 바닥재 불침투성 세부기준 연구)

  • Shin, Changhyun;Park, Jai Hak;Yoon, Junheon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.54-60
    • /
    • 2016
  • The bottom of dikes must be kept impermeable to control hazardous chemicals spilled from storage tanks. Currently, insufficient related chemical control laws lead to a possibility to spread through the bottom. Generally, due to the high cost of installation and periodical maintenance, many businesses prefer to install the bottom with general concrete. But, since the impermeability of concrete is dependent on the kind of materials and chemical reaction, all concrete cannot be considered as impermeable material. Thus, it is necessary to make the installation standards of the dike bottom clear in order to avoid the argument over the impermeability and prevent the chemical accident. This study has suggested the standards of impermeable concrete by conducting 7-day exposure test to crude oil with the pilot dikes. The results have showed that the standards have the better impermeable performance compared with the germany standard, which have been penetrated at the maximum penetration depth of 1.9 cm. This study is expected to contribute to both the risk reduction of penetrating into the bottom and the cost reduction of spending to make the bottom of dikes impermeable.

Experiment of Characteristic on the Charge and Discharge of Cold in Ice Storage System Applied Ice Making Method In-Water (수중 빙 제조방식을 적용한 빙축열시스템의 축방냉 특성 실험)

  • 최인수;김재돌;윤정인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.31-37
    • /
    • 2002
  • This paper is concerned with the development of a new method for making and separating ice and saving floated ice by installing an evaporation plate at in-water within a storage tank. In a conventional harvest-type ice storage system, a tank saves ice by separating a formed ice from an installed evaporation plate, which is located above an ice storage tank as an ice storage system. A new harvest-type method shows very good heat transfer efficiency than a convectional method. It is because the evaporation panel is directly contacted with water in a storage tank. Also, at a conventional system a circulating pump, a circulating water distributor and a piping are installed, but these components are not necessary in a new method. In this study two kinds of ice storage systems are experimentally investigated to study the thermal characteristics of ice storage tanks. The results showed discharge of cold capacity of new type indicated the high values about 30~40% based on five time of drive, the temperature difference of inlet/outlet occurred the big range about $1.3^{\circ}C$. So, the new type which makes ice in water showed superiorly.