• Title/Summary/Keyword: Storage facilities

Search Result 823, Processing Time 0.022 seconds

Risk Assessment of Tube Trailer Leaks at Hydrogen Charging Station (수소충전소 튜브트레일러 누출에 따른 위험성평가)

  • Park, Woo-Il;Yoon, Jin-Hee;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.57-62
    • /
    • 2021
  • In this study, risk assessment was conducted in case of leakage of storage facilities (tube trailer) using the HyKoRAM program developed through international joint research. The high-pressure gas facilities in the hydrogen filling station are divided into four main categories: storage facilities (tube trailers), processing facilities (compressors), compressed gas facilities, and filling facilities (dispensers). Among them, the design specifications of the tube trailer, which is a storage facility, and the surrounding environmental conditions were reflected to construct an accident scenario with previously occurring accidents and potential accidents. Through this, we identify the risks of storage facilities at hydrogen refueling stations and suggest measures to improve the safety of hydrogen charging stations.

A Study on the Appropriate Size of Large Rainwater Utilizing Facilities and Estimation of Agricultural Water Availability in Namwon eup, Jeju Island (제주도 남원읍지역 대용량 빗물이용시설의 적정규모 및 농업용수 공급 가능량 산정 연구)

  • Kim, Minchul;Park, Wonbae;Kang, Bongrae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.84-94
    • /
    • 2020
  • Jeju Island is seeking reliable ways to secure alternative water resources using rainwater in order to conserve and manage its groundwater as sustainable water resources. The purpose of this study is to investigate the rainwater storage capability of small-size storage facilities installed at farmhouses in Uigwi and Wimi of Namwon-eup region. The rainwater outflows from the storage facilities in rain events were analyzed. The appropriate size of rainwater utilizing facilities are suggested to be about 5,800 ㎥ in Uigwi area and 4,900 ㎥ in Wimi area based on the calculation from the rainfall frequency and runoff amounts. If those facilities are put into operation in Uigwi and Wimi area, it is estimated approximately 32.3 and 11.5% of total agricultural water can be supplied by the facilities. Wimi area showed low rainwater usage because of less number of facilities relative to the size of farm areas and less intensive underground water usage. It is analyzed that more than 55% of agricultural water can be supplied by rainwater if 70 facilities without the rainwater facilities are connected to the rainwater utilizing facilities.

Investigation of Health Hazards in the Underground Storage Facilities of Ginger Roots (생강 저장굴에서 발생한 건강 피해의 원인 조사)

  • Bae, Geun-Ryang;Lim, Hyun-Sul
    • Journal of Preventive Medicine and Public Health
    • /
    • v.35 no.1
    • /
    • pp.72-75
    • /
    • 2002
  • Objectives : To evaluate the health hazards in the underground storage facilities of ginger roots. Methods : The authors reviewed the emergency rescue records from the Seosan fire department over the period Jan 1, 1996 to Aug 31, 1999. The atmospheres in 3 different underground storage locations were analyzed for $O_2,\;CO_2,\;CO,\;H_2S\;and\;NH_4$. Results : From the emergency records, we were able to identify 20 individuals that had been exposed to occupational hazards in the underground storage facilities. Among these 20 cases, 13 were due to asphyxiation (resulting in f deaths) and 7 were due to falls. In the first atmospheric tests, peformed on Feb 25, 1998, the O2 level inside the underground storage facility, located about $5{\sim}6$ meters below the surface, was 20.6% and the $CO_2$ level was about 1,000 ppm. CO, $H_2S\;and\;NH_4$ were not detected. In the second tests on Jul 6, 1999, measurements of the $O_2$ level at 3 meters below the surface in two different storage locations were 15.3 and 15.1%. And the $O_2$ levels inside the storage facilities were 12.2 and 12.1%. The $CO_2$ level was above 5,000 ppm (beyond upper limits of measurement). CO, $H_2S\;and\;NH_4$ were not detected. Conclusions : We conclude that asphyxiation in the underground storage facilities for ginger roots was not due to the presence of toxic gases such as CO, $H_2S\;and\;NH_4$, but rather the exclusion of oxygen by carbon dioxide was responsible for causing casualties. For the development of a hazard free working environment, safety education as well as improvements in storage methods are needed.

Latest welding technology for storage and transportation facilities of liquified natural gas (LNG저장과 수송설비의 최신용접기술)

  • Kim, Young-Sik;Kil, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.17-27
    • /
    • 2016
  • The need for storage and transportation facilities of liquefied natural gas have increased significantly because of global environmental regulations and recent shale gas innovation in North America. There is severe competition between Korea, Japan, and China for receiving manufacturing orders of LNG carriers or LNG storage tanks. Rationalization of the welding process used in the manufacturing of LNG facilities plays an important role in the above competition. This review paper presents the current global status and tendency for the development of latest welding technologies for LNG storage and transportation facilities. This article intends to present materials for raising the domestic competitive power for receiving manufacturing orders of LNG facilities.

Underground Storage of Food (농수산물 및 식품의 지하 저장)

  • 신희순;권광수
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.192-200
    • /
    • 1994
  • Underground offers many advantages for storing agricultural and marine products. Since it is confined by thick walls of rock it is easy to control temperature and humidity and to achieve air and water tightness. Also, damages by rodents and insects could be avoided. Flexibility in choosing the location is another advantage that underground could offer. Consequently the goods could be stored near the big city to meet the demand change. Because of these advantages, many underground food storage facilities were built and operated successfully in U.S. and many Euroupean countries. On the other hand, there is no underground food storage facilities in Korea despite the need is growing rapidly. This paper describes the case studies of foreigh food storage and technologies related to food storage were analyzed and evaluated. Also performed is analysis of domestic technologies for construction and operation of underground food storage facilities to deduce the fields of studies that have to be conducted.

  • PDF

Preservation Environments of Cooperative Library Storage Facilities (공동보존서고의 보존환경에 관한 연구)

  • Cho, Yong-Wan;Rho, Jee-Hyun
    • Journal of Korean Library and Information Science Society
    • /
    • v.44 no.4
    • /
    • pp.367-397
    • /
    • 2013
  • Recently, there are some discussions about cooperative library storage facilities as methods to relieve the pressure from shortage of library stacks in Korea. This study tried to inspect the preservation environments of 16 cooperative storage facilities in USA, Australia, France, Spain and Korea to help to prepare and establish cooperative storage facilities with ideal preservation conditions. To do this, some aspects of the preservation environments including basic conditions shelving system, HVAC(heating, ventilating and air conditioning) system, fire extinguishing system, security system and other preservation environments were compared and analyzed.

Design and Effectiveness Analysis of prefabricated Storage-type infiltration facility (조립식 저류형 침투시설의 설계 및 공간적용 효과분석)

  • Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.103-108
    • /
    • 2016
  • Purpose: This study has developed economical and environmentally friendly storage type infiltration facilities that securing storage space inside the infiltration facility. It focused on preventing flooding rainfall as well as securing more groundwater through rainwater infiltration that is valuable for the dry season. In addition, this study compares the installation cost of the storage-type infiltration facility to the cost of the conventional rainwater management facilities to demonstrate the economic efficiency of the storage-based infiltration facility. Method: Unit infiltration of this facility is calculated and when it was applied to a certain capacity, the amount of countermeasures are proposed in case study. Result: Unit infiltration of it is $0.2541m^3/hr$ and un it Temporary storage of it is $1.054m^3/m$. As a result, the infiltration effect of this facility is $1.306m^3/hr$. The cost was approximately 30% reduction in time to apply the storage type infiltration facility as compared with the case to apply the existing penetration of the facilities. Since the penetration of the existing facilities is smaller than that and it has much securing volume to process the same the amount of countermeasures. Therefore, it is determined that the cost significantly increases in material cost part. On the other hand, storage type infiltration facility is installed a small quantity because Unit Temporary storage and infiltration are bigger than that. So, it occurred to reduce material and installation costs.

A Study on Predicting Installation Scale of Photovoltaic Panels and Hydrogen Fuel Storage Facilities to Achieve Net Zero Carbon Emissions Exploiting Idle Sites of Military Bases (군부대 유휴부지를 활용한 탄소 순 배출량 제로 달성을 위한 태양광 패널 및 수소 연료 저장시설의 설치 규모 예측)

  • Donghak Moon;Jiyong Heo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2024
  • In this study, the scale of renewable photovoltaic(PV) panels and hydrogen fuel storage facilities required to achieve "net zero carbon emissions" in military facilities were predicted based on actual electricity consumption. It was set up to expect the appropriate installation size of PV panel and hydrogen fuel storage facility for achieving carbon neutrality, limited to the electricity consumption in the public sector, including national defense and social security administration in Yeongcheon. The experimental results of this paper are largely composed of two parts. First, representative meteorological factors were considered to predict solar power generation in the Yeongcheon area, and solar power generation was estimated through a multiple regression model using deep learning techniques. Second, the size of solar power generation facilities and hydrogen storage facilities in military bases was estimated with the amount of solar power generation and electricity consumption. As a result of this analysis, it was calculated that a site of 155.76×104 m2 for PV panels was needed and a facility capable of storing 27,657 kg of hydrogen gas was required. Through these results, it is meaningful to demonstrated the prospect that military units can lead the achievement of "carbon net zero 2050" by using PV panels and hydrogen fuel storage facilities on idle sites of military bases.

A Study on Efficient Improvement Method of Rainwater Utilization Facilities in Jeju Island (제주지역 빗물이용시설의 효율적 개선방안 연구)

  • Park, Won-Bae;Moon, Deok-Cheol;Koh, Gi Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.1-8
    • /
    • 2012
  • This study is to suggest a few efficient ways of rainwater utilization, through monitoring and analyzing 143 rainwater storage systems and 110 artificial recharge systems, which are installed in the recommended facilities by law, among the rainwater harvesting systems in Jeju Island. In the case that catchment facilities are damaged, rainwater could be contaminated by leaves and debris so that the rates of rainwater usages come to be lower. It is possible that contaminated rainwater could contaminate artificial recharge wells or rainwater discharging out of the rainwater harvesting system could result in flood and damage for the downgradient area. For maintaining high quality of rainwater and increasing rainwater utilization rate, it is necessary to install screening facilities and purification plant functioning precipitation and filtration. Also, in order to efficiently preclude the overflowing rainwater exceeding storage capacity, it is recommended to associate rainwater storage tanks with artificial recharge well or infiltration trench facilities.

Planning Guidance for Snow Control Material Storage Facilities Based on Case Studies (사례조사를 통한 제설전진기지 시설기준에 관한 연구)

  • Kim, Geun-Young;Kim, Hee-Jea;Park, U-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.4
    • /
    • pp.381-388
    • /
    • 2016
  • The snow control storage facilities have the physical requirements that are an anti-icing and deicing operations. They are efficiently and quickly performed, and composed of a vehicle depot for the snow removal equipment and truck, anti-icing and deicing chemical storages, and the control utilities. This study is to investigate the planning guidance of foreign countries, and the actual conditions of the snow control chemical storage facilities for expressway, the national highway and the local road, and is to suggest the planning guidelines. As some of the authorities have no fixed structures for the snow control storage, this study analyze the 5 cases constructed lately. From the result of the case studies, the operations performed in the snow control storage facilities and drawback of the facilities are analyzed with respect to layout, size, plan, and structure, and the improvement planning guidance is also suggested.